
1

Using Persistence to Support Incremental System Construction

Alan Dearle

al@cs.adelaide.edu.au

Department of Computer Science
G.P.O. Box 498, Adelaide

South Australia 5001
Australia

Abstract

This paper describes the use of a persistent store to support incremental
system construction. A single example is elaborated throughout the paper
to introduce elements of the incremental construction mechanism. The
essence of the technique is to permit assignment of executable program
fragments to typed locations in order to change the behaviour of a program
under construction.

The technique described in this paper relies upon the existence of three
features: a persistent store, updatable locations and first class executable
values. The examples in this paper use the persistent programming
language Napier88, but any language with these features could be used to
construct such a system.

1. Introduction

In many programming environments, the compilation units are syntactic entities which
typically contain some data and a set of procedures (or functions) which provide access to
that data. This approach is exemplified by packages in Ada [1] and Object Oriented Design
Methodology [6]. This paper describes a more flexible scheme which permits incremental
system construction and a high degree of component reuse. In the technique described in
this paper, modules are more akin to operating system directories than the syntactic units to
which most of us are accustomed.

In order to support a technique such as the one described in this paper, an object store is
required as a repository for modules. This requirement has been recognised by other
researchers in the field, for example, Boehm [5] cites the provision of a project master data
base or persistent object base as one of the important features distinguishing an Integrated
Project Support Environment (IPSE) from a collection of ad hoc tools. The need for a
uniform, homogeneous object storage facility is also identified by the Portable Common
Tools Environment (PCTE) [16] and the Ada Apse designers [14].

Programming languages normally have little support for the maintenance of long term data.
The only concession usually made is the provision of a file data type. Therefore, the
programmer is faced with the task of mapping data onto long term storage which is usually
provided by the file system or DBMS. The mapping of data between long and short term

2

storage is expensive, both in terms of programmer design time and program run time. In
1978, Atkinson [2] recognised this problem and isolated a property of data known as
persistence. Persistent programming is a relatively new paradigm that makes data intensive
application programming significantly easier. The idea behind persistence is a simple one:
data in a system should be able to persist (survive) for as long as that data is required.
Orthogonal persistence means that all data may be persistent and that data may be
manipulated in a uniform manner regardless of the length of time it persists. In other
words, the right for data to survive for a long (or short) time is independent of the type of
data. Programs manipulating data do so in a uniform manner, whether the data is short or
long lived.

Software development environments require the storage of large amounts of fine grain
program components and the relationships between them. The uniform, homogeneous
object storage facility provided by a persistent store makes an ideal vehicle for the
construction of IPSE's [12].

Parnas [15] states that any part of a program which could conceivably be reused should
form a module. The advantages of making the unit of change (a module) small may be
observed in systems such as Smalltalk-80 [9] in which large amounts of fine grain code
exists which may be (and is) easily reused. In the examples in this paper, procedures† that
are first class data objects [4] are used as the units of compilation and reuse. It should be
noted that although procedures are used in this paper as the unit of reuse, any executable
value which may be assigned to a location may be used in their place.

Making procedures first class data objects permits them to be treated like any other data
type; in particular, it allows procedural data to be stored in the persistent object store.
Procedures also have the advantage that they are relatively small and self contained. First
class procedures may also be used to provide encapsulation and protection of data. The
power of traditional library facilities, modules and generics are subsumed when first class
procedures are combined with persistence and a powerful type system that includes
parametric polymorphism. In this paper, the programming language Napier88 [13] is used
as the vehicle to describe the incremental system construction methodology. It has first
class procedures, assignment, orthogonal persistence and a polymorphic type system.

This paper describes an incremental method of system construction. A simple example is
introduced and used throughout the paper to illustrate the techniques involved. Although
the example is extremely simple, the method of system construction scales without loss of
generality. The paper first describes how the behaviour of programs may be changed using
assignment, L-value binding and first class procedures. The next section demonstrates the
use of a persistent store as a repository for components under construction. The
construction of parameterised components is the subject of the next section. Finally, issues
of type evolution and sealing are discussed.

† In this paper the word procedure will be used synonomously with the word function.

3

1.1 The language Napier88

Before presenting an example, it is expedient to make a few comments about the language
Napier88 which is used in the examples throughout this paper. In line with the principle of
data type completeness [10], all Napier88 data types share the same civil rights. These are:
the right to be declared, the right to be passed to and be the result of a procedure, and the
right to the full spectrum of persistence. Since much of this paper is concerned with
binding mechanisms, it is prudent to spend some time describing the binding mechanisms
provided by Napier88. These mechanisms are described in more detail in [11].

In Napier88, a binding may be instantiated anywhere in a block (as opposed to at the
beginning of a block in languages like Pascal). Bindings are always initialised in Napier88,
it is impossible to create a binding without specifying an associated value. The language
allows two different kinds of bindings to be created: constant bindings and variable
bindings, both of which may be instantiated with a value which is unknown at compile
time. Conceptually, all Napier88 bindings are L-value (location) bindings. That is, when a
name is used, the appropriate value is fetched from the location denoted by that name. In
Napier88, bindings are introduced using the keyword “let”. For example,

let a = 7

creates a constant binding from the name a to the value 7. The declaration enriches the
scope in which it is made. After the declaration the name a may be used. Similarly, a
constant binding may be created to a statically unknown value as follows:

let b = factorial(42)

In this case it is impossible to know the value to which b is bound until the procedure
factorial has returned a value (at run time). Variable bindings are syntactically
distinguished from constant bindings by the use of “:=” rather than “=” during their
creation. Thus,

let a := 7

denotes a binding between the name a and a location which initially contains the value 7.
Variable locations may be updated by assignments such as:

a := 3

Similarly, the programmer may create constant or variable bindings to procedure values.
For example, the following creates a variable binding to the add procedure:

let add := proc(a, b : int → int) ; a + b

2. An example

An example will now be introduced and subsequently elaborated. The example is used to
illustrate two different points: the power of the language Napier88 and the incremental

4

system construction architecture. In the example, four procedures are defined and used: a
procedure called inc to increment a number, one to decrement a number called dec, another
to add two positive numbers called add, and finally a procedure called double which
doubles a number; these procedures are shown in Figure 1.

let inc := proc(i : int → int) ; i + 1
let dec := proc(i : int → int) ; i – 1

let add := proc(a, b : int → int)
begin

while b > 0 do
begin

a := inc(a)
b := dec(b)

end
a ! return a as the result.

end

let double := proc(j : int → int) ; add(j, j)

Figure 1: A small Napier88 program

In Figure 1, the name double is bound to a location containing a procedure closure. This
closure (the value of a procedure) is bound to a location containing the procedure closure
for add. The procedure add is itself bound to two other locations, namely the locations
containing the procedure closures for inc and dec . These bindings may be
diagrammatically represented as shown in Figure 2:

5

closure for:
proc(j : int -> int) ; add(j,j)

closure for:
proc(a,b : int -> int)
begin
 while b > 0 do
 begin

a := inc(a)
b := dec(b)

end
 a
 end

closure for:
proc(i : int -> int) ; i + 1

inc dec

add

double

closure for:
proc(i : int -> int) ; i - 1

Figure 2: The binding graph for the program shown in Figure 1.

3. Changing program behaviour using assignment

In the example shown in Figure 2, the components are bound using L-value bindings. That
is, the value of the procedure stored at the location called double is bound to the location
containing the procedure add and not the value of the add procedure. Similarly, the add
procedure is bound to the locations containing the inc and dec procedures. This binding
mechanism is extremely important since if the values of procedures had been bound using
direct value bindings no evolution could take place in the system.

As the system stands, evolution may take place. For example, the procedure value
contained in the location denoted by add may be replaced with a more efficient one which
does not use inc or dec. Since a location exists containing add, this may be achieved using
a simple assignment† as shown in Figure 3.

† Provided that the procedure being assigned and the location are of the same type. This issue will be
addressed later in the paper.

6

let inc := proc(i : int → int) ; i + 1
let dec := proc(i : int → int) ; i – 1

let add := proc(a, b : int → int)
begin

while b > 0 do
begin

a := inc(a)
b := dec(b)

end
a ! return a as the result.

end

let double := proc(j : int → int) ; add(j, j)

add := proc(a, b → int) ; a + b

Figure 3: Assignment to a location containing a procedure value.

Since the procedure denoted by double is bound to the location containing add and not the
value of the procedure add, the procedure denoted by double will reflect the changes made
to add. The value that was bound to the location add is still in existence. Any programs
bound to that value rather than the location will continue to use the old code. The binding
graph for the system after the assignment is shown in Figure 4.

closure for:
proc(j : int -> int) ; add(j, j)

closure for:
proc(i : int -> int) ; i + 1

closure for:
proc(i : int -> int) ; i – 1

inc dec

add

double

closure for:
proc(a,b : int -> int) ; a + b

closure for:
proc(a,b : int -> int)
begin
 while b > 0 do
 begin

a := inc(a)
b := dec(b)

end
 a
 end

Figure 4: The binding graph for the program shown in Figure 1 after an assignment.

7

Thus a system may be evolved using first class procedures and bindings to locations.
Traditionally, the program fragments shown above would be encapsulated within some
syntactic mechanism such as a file or a module. In order to allow evolution to occur, some
general mechanism is required to allow the locations containing the program fragments to
be updated. The incremental construction technique described in this paper proposes the
persistent store as a repository for these bindings.

4. Using the store as a module repository

The persistent store serves to permit locations containing program fragments to be accessed
during the program construction process. In Napier88 this mechanism is provided by a
data type called environment [8]. Environments are collections of bindings which may be
extended or contracted under user control. All environments belong to the same infinite
union type, denoted by the type name env. For each binding contained in an environment,
the Napier88 system maintains an identifier, a value, a type and a constancy indicator. By
manipulating the bindings in environments, the user can control the name space. To create
an environment, the standard procedure environment is used, it has the following type:

proc(→ env)

Calling this procedure creates an environment containing no bindings. Adding a binding to
an environment is the dynamic analogy of adding a declaration (binding) to a scope level.
Bindings are therefore added to an environment by making a declaration. For example,

let firstEnv = environment()
in firstEnv let inc := proc(i : int → int) ; i + 1

creates an environment, denoted by firstEnv, and then places the binding associated with the
name inc in it. In this example, the environment records the identifier inc, the value
“proc(i : int → int) ; i + 1”, the type “proc(int → int)” and the fact that the binding is
updatable. Unlike normal declarations, environment declarations do not enrich the local
scope; that is the name inc is not in scope following the environment declaration. Instead
the declaration is added to the environment denoted by firstEnv. To use the bindings
contained in an environment, a projection statement, known as a use clause, is invoked
which projects a binding from an environment into a local scope. For example,

use firstEnv with inc : proc(int → int) in inc(7)

introduces the value bound to inc in the environment firstEnv into the local scope. The
binding used is an L-value binding. This means that, if an assignment is made to inc in the
body of code following the in, the value that is bound to the environment will be changed.
Such a projection invokes a dynamic check to ensure that a binding with name inc exists in
the environment and that the projected value matches the expected type. This is one of two
places in Napier88 where dynamic checking is performed – in all other cases checking is
performed statically. The environment use clause need only specify the particular bindings
that are to be used from the environment.

8

4.1. Environments and the persistent store

Environments are used by convention to impose structure on the persistent store. In
accordance with the concept of orthogonal persistence [3], all data objects in Napier88 may
persist. For each incarnation of the Napier88 object store, there is a root of persistence
which may be obtained by calling the (only) predefined procedure called PS which has the
type:

proc(→ env)

Thus, the distinguished root of the persistent store graph is of type env. Every value stored
in the persistent store is reachable from this environment. A set of standard bindings is
provided with every Napier88 persistent store. One of these bindings contains the
procedure used earlier to create environments. It is bound to the identifier environment in
the root environment. The following program illustrates the use of this procedure:

let ps = PS()
use ps with environment : proc (→ env) in
begin

let newEnv = environment()
in newEnv let inc := proc(i : int → int) ; i + 1

end

Figure 5: Using the Napier88 environment procedure.

The program shown in Figure 5 binds the root of persistence to the local identifier ps. The
use clause binds the local identifier environment to the environment creation procedure in
the root environment. Inside the body of the use clause, this procedure is called to create a
new (empty) environment. Finally, a binding denoted by inc, is made in the newly created
environment. The reader should note that the environment bound to newEnv is not yet
persistent. Objects that persist beyond the activation of the program unit that created them
are those which the user has arranged to be reachable from the root of persistence. To
determine this, the system computes the transitive closure of all objects starting with the
root. Thus, in order to place objects in the persistent store, the user has to alter or add
bindings that can be reached from the distinguished root. In order to make the environment
newEnv persist, the user may write:

let ps = PS()
use ps with environment : proc(→ env) in

in ps let newEnv = environment()

Figure 6: Adding bindings to the root environment.

which adds the binding denoted by newEnv to the root environment. Once the environment
newEnv is made persistent, the procedures inc and dec may be placed into it as shown in
Figure 7 below:

9

use PS() with newEnv : env in
begin

in newEnv let inc := proc(i : int → int) ; i + 1
in newEnv let dec := proc(i : int → int) ; i - 1

end

Figure 7: Adding procedure bindings to newEnv.

This program binds the procedures inc and dec to the environment newEnv which is located
in the root environment. Since the environment newEnv is persistent and the procedures
denoted by inc and dec are reachable from newEnv, they too are persistent. The procedure
add may now be written to use these procedures as shown in Figure 8 below:

use PS() with newEnv in
use newEnv with inc, dec : proc(int → int) in

in newEnv let add := proc(a, b : int → int)
begin

while b > 0 do
begin

a := inc(a)
b := dec(b)

end
a ! return a as the result.

end

Figure 8: Adding add to newEnv.

In Figure 8, the procedure denoted by add is bound to the locations containing the
procedures inc and dec. Any consequent changes to the locations bound to these names
will be reflected in the semantics of the procedure denoted by add. The binding graph for
the code in Figure 8 is shown in Figure 9 below.

10

closure for:
proc(a,b : int -> int)
begin
 while b > 0 do
 begin

a := inc(a)
b := dec(b)

end
 a
 end

closure for:
proc(i : int -> int) ; i + 1

inc dec

add

closure for:
proc(i : int -> int) ; i - 1

newEnv

PS

inc decadd

newEnv

Figure 9: The binding graph corresponding to Figure 8.

Notice that it is essentially the same graph as that shown in Figure 2. This shows that using
the binding mechanisms found in environments, the block structure of Napier88 may be
dynamically constructed. The difference is that the individual program elements are no
longer trapped inside syntactic enclosures such as files or modules. Instead they are
contained in a type secure object store where they may be reused. Since the individual
procedures may be separately compiled and bound, a framework to support evolution and
reuse is beginning to emerge.

5. Constructing parameterised components

It has been shown that procedures may be placed into the persistent store and their
behaviour modified by altering the contents of the locations to which they are bound.
However, sometimes a developer wishes to reuse procedure code but does not wish to
reuse the statically bound environment of that procedure. For example, consider the
procedure double shown in Figure 1. It uses a procedure called add to add two integers
together. The code of double could be reused independently of the actual instance of the
procedure add bound to it. It is easy to imagine two instances of double, one bound to the
procedure add shown in Figure 8 and another bound to the following version of add:

11

let add = proc(a, b : int → int) ; a + b

The ability to selectively reuse code without being forced to share the same static
referencing environment may be achieved by parameterising the system building
components. In Napier88 this requirement is satisfied by the use of generators.

Generators are procedures which produce other procedures as a result of their application.
Generators therefore utilise the power of first class procedures and will be introduced using
a new example. Consider the piece of code shown in Figure 10 below; the procedure
denoted by putGet returns the value of the location denoted by register. The integer passed
as a parameter to putGet is saved in this location and is returned on the next call. Note that
register is a free variable with respect to the procedure putGet. This means that the variable
register will be shared by all instantiations of the procedure.

let register := 0

let putGet = proc(param : int → int)
begin

let temp = register
register := param
temp

end

Figure 10: The putGet procedure.

Since the procedure uses a single shared store location, it cannot reliably be used to save
values by a number of different procedures. This may be overcome by wrapping the
procedure in a generator as follows:

12

let putGetGen = proc(initial : int → proc(int → int))
begin

let register := initial ! this is encapsulated

proc(param : int → int) ! this is the procedure returned
begin

let temp = register
register := param
temp

end
end

Figure 11: A putGet generator procedure.

Every program wishing to use putGet may now do so safely by calling putGetGen in order
to obtain a putGet procedure with its own store. The location denoted by register is a free
variable with respect to the (anonymous) putGet procedure but bound with respect to the
generator. As shown in Figure 12 below, every application of the generator yields a new
putGet procedure with its own encapsulated store in the form of the variable register.
Although a new putGet value is produced on every application of putGetGen, all the
instances of putGet share the same code; in this way procedures may share code without
having to share state.

let putGet1 = putGetGen(10)
let putGet2 = putGetGen(3)

writeInt(putGet1(13)) ! writes out 10
writeInt(putGet2(5)) ! writes out 3
writeInt(putGet1(6)) ! writes out 13

Figure 12: Two uses of the putGet generator.

5.1. Generators and code reuse

First class procedures may be used to provide a mechanism which allows the sharing of
code without the sharing of state. The notion of state may be extended to include all the
values bound to a particular procedure closure, including bound procedural values. When
first class procedures are considered, these include bound procedural values. Applying this
technique to the procedure add shown in Figure 1 yields the following:

13

let addGen = proc(inc, dec : proc(int → int) → proc(int, int → int))
begin

proc(a, b : int → int) ! this procedure is the result of addGen
begin

while b > 0 do
begin

a := inc(a)
b := dec(b)

end
a ! return a as the result.

end
end

Figure 13: A generator for add.

The code of procedure add may now be bound to any two arbitrary procedures of type
proc(int → int). The add procedure may still be type checked statically by the compiler,
although the binding of the actual procedure values, inc and dec, has been delayed until run-
time. Since Napier88 has call by value semantics, the procedure instances generated by
addGen have direct value bindings to the actual procedures inc and dec. Thus one of the
advantages discussed above is lost, namely the instances of inc and dec bound to an
instance of add may not be updated by simple assignment. Some modification of the
technique is necessary if this desirable property is to be retained.

5.2. Generators and environments

Combining the techniques shown in Figures 8 and 13 produces a powerful and flexible
architecture. If environments, rather than procedures, are passed as parameters to generator
procedures, the generated code may make L-value bindings to the procedure values stored
in those environments. This is best illustrated by the example shown in Figure 14 below:

14

let addGen = proc(incEnv, decEnv : env → proc(int, int → int))
begin

use incEnv with inc : proc(int → int) in
use decEnv with dec : proc(int → int) in
begin

proc(a, b : int → int) ! this is the result of addGen
begin

while b > 0 do
begin

a := inc(a)
b := dec(b)

end
a ! return a as the result.

end
end

end

Figure 14: A generator for add which uses environments

In the example shown in Figure 14, the generator procedure is passed two environments as
parameters and returns an add procedure. The add procedure contains bindings to the
procedure locations named inc and dec contained within the two environments. Thus any
assignments to the locations containing inc and dec will be reflected in any procedure
generated by addGen and bound to those locations.

If an environment called newEnv has been initialised as shown in Figure 7, the generator
given above may be called as in Figure 15.

use PS() with newEnv : env in
begin

in newEnv let add = addGen(newEnv, newEnv)
end

Figure 15: Using addGen to generate an instance of add.

This call will result in an instance of the add procedure being placed in the environment
denoted by newEnv and bound to the locations containing inc and dec in the same
environment as illustrated in Figure 16.

15

closure for:
proc(a,b : int -> int)
begin
 while b > 0 do
 begin

a := inc(a)
 b := dec(b)
 end
 a
end

closure for:
proc(i : int -> int) ; i +

closure for:
proc(i : int -> int) ; i -

generators instances

incGen decGenaddGen inc decadd

closure for:
decGen

closure for:
incGen

closure for:
addGen : proc(env,env
 -> proc(int,int -> int)

CALL

ASSIGN

Figure 16: Generating the add procedure

Note that the application binding graph is identical to that shown in Figure 9. However,
using this technique, many different versions of add may be generated which all share the
same code but have different referencing environments and hence different behaviour. In
general, the construction of an instance of a procedure such as add involves four steps:

1. Extract the generator procedure from the store.

2. Extract the environments containing the desired parameters from the store.

3. Apply the generator procedure with the appropriate environments as
parameters.

4. Assign the resulting procedure to the appropriate ‘slot’ in the instance graph.

16

5.3. Generator, instance and application graphs.

In Figure 14, two different levels of procedures are being manipulated: generators like
addGen and instances like add, inc and dec, which may or may not have been created by
generators. In general, an application is composed of procedure instances. Some infra-
structure is required to manage the procedures in the store. The strategy currently adopted
is to maintain three graphs. The first two are isomorphic, one containing the generators, the
other the instances. These are explicitly maintained using environments as a structuring
mechanism. The third graph is held implicitly within the system and is the binding graph
of the application under construction. It is formed from procedure values bound to the
typed locations containing other procedure values. The three graphs will be referred to as
the generator , instance and application graphs. They all reside in the persistent store and
are constructed using the mechanisms described earlier. A good analogy is that the
generator and instance graphs represent the scaffolding supporting the construction of the
application, whereas the application graph contains the bindings in the actual application
under construction. The graphs are illustrated in Figure 17 below.

Dashed lines:
application graph,
type checked
L-value binding

Solid lines:
instance and generator graphs,
late binding and type checking

environments

Typed
locations

Figure 17: Generator, instance and application graphs.

The three graphs use different binding and type checking regimes. The generator and
instance graphs use late binding and type checking to provide a high degree of flexibility.
The store locations containing the procedure values are highly accessible and their contents
easily modified using assignment. This is made possible by the provision of an access path
to those locations through the instance graph. The application graph is bound and type
checked when the procedure values are placed in the instance graph. Usually this will be at
the time that generators are executed. This means that no type checking or binding is
necessary at application execution time.

17

6. Type evolution and sealing.

In the discussion that has taken place, it has been assumed that procedures are only replaced
by procedures of the same type. This is an unrealistic requirement, often during the
development of a system the signatures of modules change as new requirements are made
of them. Therefore, for the technique described in this paper to be of any practical use, it
must deal with changes in the types of bound procedures without requiring a total system
rebuild.

Fortunately the problem may be solved using a modification of the method described
above. Consider the binding graph shown in Figure 18 below in which the ovals represent
L-values which contain procedure values. All the procedural values in the system bind
directly or indirectly to the dark location in the centre of the diagram. Should the type of
this location change, the values contained in those ovals shaded in a lighter colour must be
recompiled. This is necessary because any change to the type of the dark location will
render their specification incorrect. Even though these procedures must be changed, they
will not change type; consequently, the required changes may be implemented using the
mechanisms described earlier. The values stored in the white locations at the outside of the
binding matrix bind to the lightly shaded locations rather than values. They will be
unaffected by any changes to the centre location.

Figure 18: A binding matrix.

The mechanism to change the type of any procedure is therefore simple:

1. The location containing the old value is removed.

2. A new location is created of the appropriate new type.

3. The procedure source must be edited and the new compiled procedural value
assigned to the new location (in practice, steps 2 and 3 may be merged).

18

4. The procedures which make use of the procedure whose type has changed
must be altered, compiled and assigned to their original locations in the
binding matrix.

This amounts to making a hole in the application binding matrix and then darning in a new
piece of code. In most cases, the majority of the application will be unaffected and
therefore will not require any recompilation or rebinding.

6.1. Sealing

When a designer is satisfied with a system under development, it must be capable of being
protected from accidental or malicious change; this task is sometimes known as sealing. [7]
Using the techniques described in this paper, sealing is a relatively trivial matter. All that is
required is the removal of the access path to the locations containing the application whilst
retaining at least one entry point to the program. Since the Napier88 system defines
persistence by reachability, the locations containing the components of the system are
retained provided that they are reachable from the persistent root. Since the locations are
reachable from the program entry point(s) they will persist, even though the programmer
can no longer name them.

This technique will be illustrated by example. Suppose that the system shown in Figure 9
exists and the programmer wishes to seal it, preserving only the entry point called add.
This may be achieved as shown in Figure 19 below.

let ps = PS()
use PS() with newEnv : env in

use newEnv with add : proc(int, int → int) in
in ps let newAdd = add

drop newEnv from ps

Figure 19: Sealing a system.

In this program, the first line obtains the root of persistence. The next three lines make a
binding from the root environment to the location denoted by add in the environment
newEnv. Lastly, the environment denoted by newEnv is removed from the environment
ps. Once this program is executed, access to the environments containing the constituent
parts of the application is removed and so too is the capability to change the application. All
that remains is the single entry point called newAdd. The application graph still exists, all
that has changed is that the scaffolding and the locations containing the procedures are no
longer accessible by the programmer. As stated earlier, these locations persist since they are
reachable from the value stored in the location denoted by newAdd. The situation after the
code in Figure 19 has been executed is illustrated in Figure 20 below. Note that this system
is essentially the same as that shown in Figure 2.

19

closure for:
proc(i : int -> int) ; i + 1

inc

closure for:
proc(a,b : int -> int)
begin
 while b > 0 do
 begin

a := inc(a)
b := dec(b)

end
 a
 end

add

dec

closure for:
proc(i : int -> int) ; i - 1

PS

newAdd

Figure 20: A sealed system.

7. Conclusions

The incremental system building technique described in this paper utilises three features of
the Napier88 programming language: a persistent store, updatable locations and first class
procedures. Although the techniques have been described in terms of Napier88, any
language with these features could be used to construct such a system. Indeed, although the
evolution mechanism has been described using first class procedures, any value may be
used as the unit of system construction. The technique can be used with locations of many
different types within a single application.

The essence of the technique is to construct programs that are internally bound using L-
value (location) bindings. The programmer is provided with a method of accessing these
locations, enabling the contents of the locations to be changed, thereby changing the
behaviour of the system as a whole. No dynamic binding or type checking is required
when an application is executed. These operations may be performed at the time that the
generators are executed which is analogous to link time in traditional programming
systems. This is facilitated through two types of binding graph – a strongly typed L-value
binding mechanism internal to the application under construction and a dynamically typed
access mechanism which provides the programmer with access to the locations containing
program fragments.

The use of generators to provide a parameterisation mechanism is also of great utility.
Generators permit executable code to be shared without the need to share a referencing

20

environment. This technique aids experimentation and evolution without any loss of run
time performance.

Using this technique, all code is potentially reusable with essentially no associated run time
overhead. Furthermore there is a choice of levels at which code may be reused. In addition
to the reuse of source code, as commonly practiced in traditional programming
environments, bound executable instance code may be reused or, if a different configuration
is required, the generators may be used to produce new instances.

The technique is designed to facilitate the construction of systems using an evolutionary
approach. The user may add new modules to an existing program at any time. These may
be implemented independently of the ‘main’ application and bound later – perhaps after unit
testing. Existing programs may be updated with the same ease. It has been shown that it is
possible to seal systems which are constructed using this technique, at low cost and with
little disruption to the application that has been constructed.

8. Current status and future directions

The technique has been to construct a compiler for Napier88 written in the language. This
is an application consisting of more than 10,000 lines of code split between about 120
separate components. It has also been used to construct window management, editing and
browsing tools for the language. Current work is attempting to unite all these components
into an integrated programming environment written entirely in Napier88 which will
support the construction of programs using the architecture.

Acknowledgments

This work is supported by grants from The Defence Science Technology Organisation of
Australia (DSTO), The Australian Research Council and by The University of Adelaide.
This paper benefits from many useful discussions with colleagues at Adelaide University,
The University of St Andrews, Sydney University and Flinders University of South
Australia.

References

1. "The Programming Language Ada Reference Manual. ANSI/MIL-std-
1815a-1983.", Springer Verlag, 1983.

2. Atkinson, M. P. "Programming Languages and Databases", Fourth IEEE
International Conference on Very Large Databases, IEEE, pp. 408 - 419,
1978.

3. Atkinson, M. P., Bailey, P. J., Chisholm, K. J., Cockshott, W. P. and
Morrison, R. "An Approach to Persistent Programming", The Computer
Journal, vol 26, 4, pp. 360 - 365, 1983.

21

4. Atkinson, M. P. and Morrison, R. "Procedures as Persistent Data
Objects", Transactions on Programming Languages and Systems, vol 7,
4, ACM, TOPLAS, pp. 539-559, 1985.

5. Boehm, B. W. "Understanding and Controlling Software Costs",
Information Processing 86, pp. 703, 1986.

6. Booch, G. "Object Oriented Design", Benjamin-Cummings, 0-0853-
0091-0, 1991.

7. Cardelli, L. "Typeful Programming", DEC, 45, 1989.

8. Dearle, A. "Environments: A Flexible Binding Mechanism to Support
System Evolution", Proc. 22nd Hawaii International Conference on
System Sciences, vol II, Hawaii, pp. 46-55, 1989.

9. Goldberg, A. and Robson, D. "Smalltalk-80: The language and its
Implementation", Addison Wesley, 1983.

10. Morris, J. H. "Protection in programming languages", CACM, vol 16, 1,
pp. 15-21, 1973.

11. Morrison, R., Atkinson, M. P., Brown, A. L. and Dearle, A. "On the
Classification of Binding Mechanisms", Information Processing Letters,
vol 34, 2, pp. 51-55, 1990.

12. Morrison, R., Bailey, P. J., Brown, A. L., Dearle, A. and Atkinson, M. P.
"The Persistent Store as an enabling technology for Integrated Support
Environments", 8th International Conference on Software Engineering,
pp. 166-172, 1985.

13. Morrison, R., Brown, A. L., Connor, R. C. H. and Dearle, A. "The
Napier88 Reference Manual", University of St Andrews, PPRR-77-89,
1989.

14. Office, K. C. W. G. f. t. A. J. P. "Common APSE Interface Set. Version
1.1", Ada Joint Program Office, 1983.

15. Parnas, D. L. "On the Criteria to be Used in Decomposing Systems into
Modules", Communications of the ACM, vol 15, 12, pp. 1053-1058, 1972.

16. Thomas, I. "PCTE Interfaces: Supporting Tools in Software-Engineering
Environments", IEEE Software, pp. 15-23, 1989.

