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Abstract
Persistent programming languages differ from traditional languages in that data

of arbitrary lifetimes is fully governed by the type system.  Such languages lead to
radically different programming paradigms and methodologies for two important
reasons:

• the high-level type system may be relied upon as a protection mechanism
even for long-term data

• data of any type, including first-class procedures and abstract data types,
may be kept for arbitrary lifetimes

The combination of these means that the kind of sophisticated typing commonly
used in programs which operate over short-term data may be extended to all data
manipulated by a long-lived system.  This paper exposes some of the ways in which
well-known type system features may be powerfully used in contexts normally
associated with operating systems and database management systems.

1. Introduction

Information systems frequently have to deal with longevity and scale in the data that they

support.  Data is required with lifetimes which match the real-world processes which they

represent, which can range from microseconds to years.  Data is also commonly required to

support the work of large organisations, with time scales of up to hundreds of years.

In an orthogonally persistent programming system, the manner in which data is

manipulated is independent of its persistence.  The same mechanisms operate on both short-

term and long-term data, avoiding the traditional need for separate systems to control access

to data of different degrees of longevity.  Thus data may remain under the control of a single

persistent programming system for its entire lifetime.  The benefits of orthogonal persistence

have been described extensively in the literature and can be summarised as:

• improving programming productivity from simpler semantics;

• removing ad hoc arrangements for data translation and long term data storage; and

• providing protection mechanisms over the whole environment.



Considerable research has been devoted to the investigation of the concept of persistence and

its application in the integration of database systems and programming languages [Atk78,

ABC+83].  As a result a number of persistent systems have been developed including

Pascal/R [Sch77] PS-algol [PS88], Napier88 [MBC+89], DBPL [MS89], Galileo [ACO85],

TI Persistent Memory System [Tha86], Amber [Car85] , Trellis/Owl [SCW85] and Tycoon

[MS92]. The persistence abstraction is widely recognised as the appropriate underlying

technology for long lived, concurrently accessed and potentially large bodies of data and

programs. Typical examples of such systems are CAD/CAM systems, office automation,

CASE tools and software engineering environments. Object-Oriented Database Systems such

as GemStone [BOP+89] and O2 [BBB+88] have at their core a persistent object store.

Process modelling systems use a persistent base to preserve their modelling activities over

execution sessions [BPR91].  The goal of persistence research is to allow these socially and

economically important persistent application systems to be more sophisticated and more

economically viable.

This paper surveys some programming methodologies and styles that have been

developed after the extensive use of persistent languages in the construction of medium scale

software systems.  Section 2 introduces the main point of underlying technology which

makes the techniques possible: that of an enforced, persistent type system.  Section 3 shows

how the sophisticated protection offered by many modern type systems can be used to great

effect when extended to cover long-term data.  Section 4 surveys hyper-programming, a new

style of programming in which the program source itself contains bindings to typed values in

the persistent object store.  The advantages of hyper-programming are not limited to

persistent systems; however the persistent technology is a requirement for the safe

implementation of a hyper-programming system.

2. Type systems and persistence

Type systems are historically viewed as mechanisms which impose static safety constraints

upon a program.  Within a persistent environment, however, the type system takes on a wider

role.

Data manipulated by a programming language is governed by that language's type

system.  In non-persistent languages, however, data which persists for longer than the

invocation of a program may only be achieved by the use of an operating system interface

which is shared by all applications.  As a consequence of this, such data passes beyond the

jurisdiction of the type system of any one language.

Mechanisms which govern long term data, such as protection and module binding, must

be dealt with at the level of this interface.  Historically this has the consequence that the type

system may not be enforced, and knowledge of the typed structure of data may not be taken

advantage of.  This is shown diagramatically in Figure 2.1.
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Figure 2.1 Traditional strategy for permanent and shared data

In a persistent system, the storage of data beyond a single program invocation is handled by

programming language mechanisms, and no common operating system interface is necessary.

The only route by which data may be accessed is through the programming language, and so

the type system of a single language may be used to enforce protection upon both transient

and permanent data.  High-level modelling may be relied upon for the entire lifetime of the

data, as it never passes outside the language system.  Figure 2.2 gives a diagrammatic view of

such a system.
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Figure 2.2 The persistent strategy

The universality of the persistent type system has consequences in terms of both the

modelling and protection provided by the type system.  With respect to modelling, the

persistent type system must be sufficiently flexible to allow the modelling of activities

normally provided by untyped support systems.  Such activities include, for example, the

linking of separately prepared program units, and file system access protection.  With respect

to protection, the increased role of a type system means that any protection mechanisms



programmed at a high level may be fully relied upon to protect the data for its lifetime, as

access from outside the constraints of the type system is not possible.  In particular, various

high level information hiding techniques may be used to restrict data access, instead of

relying upon the normally coarse grain and typeless control provided by outside technologies.

3. Programming with persistent type systems

Traditionally, computer systems rely upon the type systems of individual programming

languages as the only protection mechanism for transient data, and provide a number of

different mechanisms, such as file system protection or database constraints, for permanent

data.  This is because transient and persistent data exist in two separate universes, with

different operations available upon them.  In persistent programming systems, however, there

is no clear difference between transient and permanent data, and this two-level protection

scheme is not an appropriate model.

The provision of type-safe permanent data provides one kind of control that is not

available in a non-persistent model.  Type systems by themselves, however, lack two

important categories of integrity protection.  These are access protection, to prevent data from

being accessed by programs which do not require it, and integrity constraints, which are

normally finer-grained that those which may be modelled by type systems.

Both of these categories of protection may be explicitly programmed in many

programming languages.  However, in a non-persistent system, such programmed protection

may not be extended to data exported from a program.  In a persistent system, however, data

storage is performed entirely within a programming language, and there is no problem with

the storage and sharing of any kind of data.  Access protection and integrity constraints may

therefore be flexibly programmed according to the needs of the individual data.

Access protection may be programmed in a persistent system by the use of constructs

which allow information hiding.  These include inclusion polymorphism, abstract data types,

and higher-order procedures.  What these have in common is that they may hide part of the

state of a program by introducing state which is not directly denotable.  This makes it

impossible to specify another program which will access the hidden state.

There are three well-known mechanisms which allow the programming of information

hiding within a strong type system.  These are subtyping, procedural encapsulation (1st-order

information hiding) and existential data types (2nd-order information hiding).  Subtyping

achieves protection by removing type information, causing the static failure of programs

which may try to perform undesirable accesses.  1st-order information hiding prevents the

protected data from being named by an untrusted program, allowing access only through a

procedural interface.  2nd-order hiding is somewhere between these two, allowing access

mainly through procedures, but also allowing the protected data to be named.  This data is,

however, viewed through a mechanism which causes type information loss, and therefore

allows only a limited set of operations to be performed on it.

3.1. Subtyping

In general, systems which allow subtyping allow any data value to be used in place of one

typed with less functionality. One type is a subtype of another if all operations allowed on the



second type are also allowed on the first. In the most general form of subtyping, often

referred to as inclusion polymorphism, it is type correct for the use of any value to be

replaced by the use of any of its subtypes.

A number of different semantics are possible for the definition of a subtype rule.  Here

the semantics of Cardelli [Car84] are adopted, using structural type equivalence and an

implicit subtyping rule.

Subtype inheritance is usually regarded as a general modelling technique. In particular

it allows the declaration of procedures which operate over any type with at least a set of

required properties. However, using an object as one of its supertypes is also equivalent to

hiding some of the functionality which the object possesses. For example, the following

introduces the names employee and person as record types:

type employee is record( name , address : string ; salary : int )
type person is record( name , address : string )

Type employee is a subtype of type person, and an object of type employee may be

substituted in any context where an object of type person is expected. This would have the

effect of hiding the salary field by the loss of type information. If another user is only to be

allowed this restricted access to employee objects, this view of the object may be exported,

for example by use of an explicit type coercion:

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
let exportJoe : person = joe

In this joe is declared to be an object of type employee with the given field values. exportJoe

is of type person, denoted by the type after the ":" symbol, but has the value joe. This means

that a user of the value exportJoe will now have the value of the original record.  However, it

is not possible to express an operation to access the salary field of this value due to the

restrictions of the static type system.  That is, the salary field cannot be used with the object

exportJoe since such a program would fail during static analysis.

In a non-persistent system such protection appears to be of little use.  The point of this

mechanism applied to persistence, however, is that arbitrary typed values may be made to

persist, and the type system strictly enforces any future access to them by other programs.  In

the above program segment the identifiers joe and exportJoe denote the same value, but are

of different types.  It is then possible to set up two different contexts in which these

differently typed denotations of the same value are made persistent.  Programs which

subsequently bind to the exportJoe context will be able to use the value only as a type person.

Subtying of persistent data therefore provides the essence of a database viewing mechanism

when applied to persistent data.

3.2. 1st-order information hiding

Access to data can also be restricted by only allowing access to procedures which are defined

over the data, and not allowing the data itself to be visible.  This is a common model for

abstract data types, and is known as 1st-order information hiding [CW85].  It may be

achieved in a number of ways but it will be described here in terms of a language which has

first-class procedure values and block-style scoping.  Access to the original data may then be



removed simply by its identifier becoming unavailable.  For example, the following type

defines a Person as a record containing procedures which define three operations:

type Person is record
(

getName,
getAddress : proc( → string ) ;
putAddress : proc( string )

)

This allows a finer grain of restriction than that achieved by subtype inheritance, in that the

name and address may be read, but only the address may be changed.  Access to the data may

be removed by placing its declaration in a block so that its identifier is lost from scope after

the Person object has been constructed.  This is shown in Figure 3.1.  The exported

procedures, which have the data encapsulated within their closures, are then the only way in

which the original value may be accessed. Again, this relies upon the static properties of the

system to prevent the access since a program which attempts direct access to joe will fail

statically by the scoping rules of the language.

let exportJoe =
begin

let joe = employee( "Joe Doe", "1 Assignment Boulevard", 100000 )
Person( proc( → string ) ; joe.name ,

proc( → string ) ; joe.address ,
proc( new : string ) ; joe.address := new )

end

Figure 3.1 Hiding the Data Representation

In Figure 3.1, exportJoe is declared to have the value obtained by executing the block. This is

a structure of type Person with three procedure fields. Each procedure uses the object joe

which is inaccessible by any other means after exit from the block.

Further flexibility is possible using encapsulation in that dynamic properties may be

specified, and access may be denied dynamically if required. For example, perhaps there

exists an integrity constraint that an address may not be more than 100 characters long. This

can be programmed in the procedural encapsulation, as shown in Figure 3.2. The only

difference here is that the putAddress procedure checks the dynamic constraint, and raises an

exception if it is not met.

let exportJoe =
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
Person( proc( → string) ; joe.name,

proc( → string) ; joe.address,
proc( new : string ) ;

if length( new ) ≤ 100
then joe.address := new
else raise longAddress( new ) )

end

Figure 3.2 Refining the Interface

A particular example of a dynamic constraint allows access to the original data to be

protected by password. A procedure can be provided in the interface which will return direct

access to a user with sufficient privilege.  Figure 3.3 shows the extended definition required,



with an extra procedure in type extraPerson which returns the representation of the data only

if it is supplied with a string equal to the password used to create it. In this situation, the

programmer responsible for constructing the view of the data will have enough information to

extract the representation. Alternatively, it would be possible to arrange system-wide

passwords which would decide whether access is allowed or not.

type extraPerson is record
(

getEmployee : proc( string → employee ) ;
getName,
getAddress : proc( → string ) ;
putAddress : proc( string )

)

let exportJoe = proc( password : string → extraPerson )
begin

let joe = employee( "Joe Doe" , "1 Assignment Boulevard" , 100000 )
extraPerson( proc( attempt : string → employee )

if attempt = password
then joe
else failValue,

proc( → string ) ; joe.name,
proc( → string ) ; joe.address,
proc( new : string ) ; joe.address := new)

end

Figure 3.3 Protection by Password

This technique gives a result not dissimilar from the kind of module provided by Pebble

[BL84] and a high level language analogy of capabilities [DvH66].

Instead of a string password, an unforgeable “software capability” may be used.  It is a

consequence of orthogonal persistence that, for any type over which identity is defined, the

identity of any value is unique for the lifetime of the system.  Therefore the identity of such a

value is unforgeable.  If such a value is bound to the closure of a procedure as its password,

then to use the procedure a programmer must somehow have access to the same value.

3.3. 2nd-order information hiding

2nd-order information hiding does not restrict access to the protected values, but instead

abstracts over the type of the protected value to restrict operations allowed on it. Thus the

protected values may be manipulated for some basic operations, such as assignment and

perhaps equality, but their normal operations are not allowed due to the type view. This

allows the representation objects themselves to be safely placed in the interface along with

the procedures which manipulate them.

One mechanism which allows 2nd-order information hiding is the existential data type

as described in [MP88].  This allows the definition of interface types which are abstracted

over.  As names for these types are declared before the existential type definition, different

parts of the definition may be bound to the same type.  As before, only the basic operations

defined on all types are allowed over the abstracted types, but values which are abstracted by

the same name are statically known to be compatible.  Person as above may be redefined as:



type Person is absType[ absPersonType ]
(

absPerson,mum,dad,favourite : absPersonType ;
getName,getAddress : proc( → string ) ;
putAddress : proc( string )

)

The identifier in square brackets before the body of the type declaration declares a name for a

type which is abstracted over.  This allows a tighter definition of such types, as it can now be

seen where the same type appears in the interface.  Components of the same instance of an

interface may be bound together by a use clause.  For example,

use exportJoe as joe in
joe.favourite := joe.mum

may be statically determined to be type correct, as the favourite and mum fields must be type

compatible to allow the object to be created.

This static binding of equivalent types may also be used to allow the interface

procedures to be defined over the type of the hidden representation. A more flexible

definition which allows the name and address operations to be performed on any of the

people in the interface would be:

type Person is abstype[ absPersonType ]
(

absPerson,mum,
dad,favourite : absPersonType ;
getName,getAddress : proc( absPersonType → string ) ;
putAddress : proc( absPersonType,string )

)

This allows the definition of n-ary operations over the hidden representation type. For

example, a procedure may be placed in the interface which tests if two people have the same

address:

type Person is absType[ absPersonType ]
(

absPerson,mum,
dad,favourite : absPersonType ;
getName,
getAddress : proc( absPersonType → string ) ;
putAddress : proc( absPersonType,string ) ;
sameAddress : proc( absPersonType,absPersonType → bool )

)

This example illustrates a major difference in power between 1st-order and 2nd-order

information hiding. With 2nd-order, a type is abstracted over, and procedures may be defined

over this type. With 1st-order hiding, it is the object itself which is hidden within its

procedural interface. Procedures which operate over more than one such object may not be

defined sensibly within this interface. Therefore any operations defined over two instances

must be written at a higher level, using the interface. At best this creates syntactic noise and is

inefficient at execution time. It also means that such operations are defined in the module

which uses the abstract objects, rather than the module which creates them. Some examples

are not possible to write without changing the original interface.



Once again it should be stressed that the type constructs introduced here are well

understood and found in many programming languages.  The use of these mechanisms in

persistent languages relies upon the ability of values of these types to be kept for arbitrary

lifetimes, and the binding of new programs to them to be strongly typed.  Therefore the

protection provided by the mechanism can be used in a much wider context.

4. Hyper-programming

The presence of persistent data in the software construction environment allows the

introduction of new binding paradigms, in particular the ability to bind persistent values

directly into both source and executable code. This allows programs which contain links to

persistent values within their source code, instead of textual denotations of these links which

must be evaluated and bound to the program code during or immediately before its execution.

This structured form of a program bears a similar relationship to purely textual programs as

hyper-text does to ordinary text, and so the new style of program is known as a hyper-

program [KCC+92, Kir92, Cut92].

The traditional representation of a program as a linear sequence of text forces a

particular style of program construction to ensure good programming practice. Persistent

systems have the ability to allow the persistent environment to participate in the program

construction process. This raises the possibility of allowing the representations of source

programs to include direct links to values that already exist in the environment, giving hyper-

programs.

The primary motivation for providing a hyper-programming system is to allow the

programmer to compose programs interactively, navigating the persistent store and selecting

data items to be incorporated into the programs. The programmer has the option of linking

existing data items into a program by pointing to graphical representations. This removes the

need to write access specifications for persistent data items that are accessed by a program.

The ability to link to data items at run-time is still required in the cases where data becomes

available only after a program is written.

Figure 4.1 shows an example representation of a hyper-program. The hyper-program

contains both text and links that denotes data items in the persistent store. The first link is to a

procedure to write out a string; this is called to write a prompt to the user. The program then

calls another procedure to read in a name, and then finds an address corresponding to the

name. This is done by calling a lookup procedure which is one of the components of a table

package linked into the hyper-program. The address is then written out.
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      ( "enter name: " )

let name =       ()

let address =       ( lookup )( name )

      ( "address is: " )

      ( name )

table of names
and addresses

readString

Figure 4.1 A hyper-program

Many programs may share links and the graph of program components can become highly

interconnected. Other benefits of hyper-programming include:

• increased ease of program composition;
• being able to perform program checking early;
• being able to enforce associations from executable programs to source programs;
• availability of an increased range of linking times;
• reduced program verbosity; and
• support for source representations of procedure closures.

The principal requirement for supporting a hyper-programming system is a persistent store to

contain the program representations and the data items denoted by the links in the programs.

The persistent store must be stable, and support referential integrity. Hence when a reference

to a data item in the store has been established, the data item will remain accessible for as

long as the reference exists.  An incremental binding mechanism is also required, to allow

newly constructed programs to be bound back into the system within which they were

constructed.

Hyper-programming is not possible unless the source and executable forms of programs

reside in the same persistent space as the rest of the application data.  Thus an implementation

requires to be based not only upon a persistent programming language, but one in which full

support is available for the entire software lifecycle.  This includes for example a program

editor, an object browser, a compiler and a window manager, all written in the persistent

language itself.

A prototype hyper-programming system is available in the Napier88 release system

[KCC+92].  It is important to note that hyper-programming is not an intrinsic part of the

Napier88 language, and could be provided in any persistent language given the appropriate

support technology.

5. Conclusions

It has been shown how the provision of persistence sheds new light upon the use of type

system features common in non-persistent languages.  The fact that attributes of a type may



be absolutely relied upon for the lifetime of the data it describes gives some powerful new

methodologies for the programming of activities normally associated with untyped, operating

system support systems.

The mechanisms of subtype inheritance, procedural encapsulation, and existential data

types have been discussed with relation to the programming of protection within a persistent

system.  These mechanisms may be used to program protection only in a persistent system; in

a non-persistent system the protected data is always susceptible to abuse by the common

operating system interface through which its storage must be arranged.

Protection in database systems is normally provided by viewing mechanisms.  These

allow database programmers to set up different interfaces over the same data, so that users

with different privileges may perform different operations.  It is clear that the information

hiding techniques presented above may be used to program flexible viewing mechanisms

within a persistent programming system.

The last consequence of strongly typed persistent data presented is the ability to safely

allow the style of programming known as hyper-programming.  The concept of hyper-

programming is straightforward: programs may contain direct links to values, rather than

textual denotations which are bound to at or after compilation.  The only way this

programming style can be supported with any reasonable degree of safety is by the system

being contained in a stronly-typed persistent environment, so that the types of the direct

bindings can be enforced.
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