
This paper should be referenced as:

Cutts, Q.I., Connor, R.C.H., Kirby, G.N.C. & Morrison, R. “An Execution Driven Approach to Code
Optimisation”. In Proc. 17th Australasian Computer Science Conference, Christchurch, New Zealand (1994) pp
83-92.

2

An Execution-Driven Approach to Code Optimisation
Quintin Cutts, Richard Connor, Graham Kirby and Ron Morrison

Department of Mathematical and Computational Sciences, University of St Andrews,
North Haugh, St Andrews, Fife KY16 9SS, Scotland.

Phone: +44 334 63241
Internet: {quintin, richard, graham, ron}@dcs.st-andrews.ac.uk

Abstract
Whether code is created by a programmer or
generated by a compiler, its construction is
traditionally based on a strategy developed before
code execution begins. The strategy determines the
conditions most likely to occur during execution
and optimises code generation accordingly.
Execution is non-optimal when the conditions
expected by the code generation strategy differ from
those actually experienced.

An optimisation technique is described here which
allows an executing system to be incrementally
improved as information about the execution
conditions become available. Optimisations are
performed by recompiling source code using new
code generation strategies and then linking the new
code segments into the executing system. The
body of data collected or constructed during
execution is unaffected, making the technique
particularly suited to long-lived, data-intensive
systems.

This paper describes the technique in general,
implementation requirements and a particular
instantiation of the technique in which the
implementation of polymorphism is optimised.
Further examples of the technique are also outlined.

1 . Introduction
Code is traditionally constructed according to a
statically-determined strategy based on expected
execution conditions. Typically the code generator,
whether a programmer or a compiler, is unable to
determine which of the potentially huge number of
possible conditions will occur. Since the
construction of optimal code for all possible
situations is prohibitively expensive or even
impossible, the traditional goal of code generation
is to construct code which executes acceptably in
all situations and optimally in those situations
statically deemed most likely to occur.

The aim of this paper is to describe an optimisation
technique that allows systems to dynamically
respond to differences between the expected and
actual execution environment. Response takes the
form of code segment recompilation using
strategies based on the execution conditions
experienced dynamically. The compilation
strategies allow optimal code to be constructed for
the dynamic conditions.

Examples of the optimisations under consideration
here include:

• automatic self-generation of new code to
handle execution conditions not statically
allowed for,

• optimisation in place of the method code of
objects in object-oriented systems, whilst
maintaining existing data within the system,
and

• dynamic restructuring of the queries in a
database system to operate optimally over the
particular data discovered during execution.

Dynamically tuned systems are not new. Such
systems traditionally are optimised by
manipulating the data over which the system
operates. An example is clustering [BDH91] where
separate data items that are dynamically discovered
to be accessed as a group are clustered in storage so
as to optimise access speed.

Tuning code in a system is unusual but is found in,
for example, query optimisation where database
access algorithms are updated as the body of data
within the database evolves [CD91].

The optimisation technique described in this paper
extends code tuning by supporting the addition of
dynamically constructed code to a running system.
Newly compiled code segments are added to the
body of code making up the system. The most
appropriate code version can then be chosen
according to the prevailing conditions.

The technique is particularly applicable to systems
where programs are constructed in isolation from
the data over which they operate. This occurs in
long-lived and data-intensive systems such as
CAD/CAM systems, office automation and CASE
tools.

The requirements for implementing the technique
may be summarised as follows:

• persistence of data including code across
system invocations,

• the availability of system source code and a
compiler during execution, and

• incremental linking and loading of newly
constructed code segments.

These requirements make the technique particularly
sui table for object-or iented systems
[GR83,Car89,BOP+89] and pers is tent
programming environments [KCC+92,PS88,

Tha86,Car85,SCW85]. In this paper, it will be
shown that a persistent programming system
provides an appropriate base technology for the
technique's implementation.

2 . The General Optimisation
Technique

2 . 1 Overview of the Technique

Programs are constructed so that they will run
optimally under the conditions expected to occur
during execution. This optimal position is usually
based on a tradeoff between the speed of execution
and the space required for the storage and
manipulation of program code and data. The
optimisations supported by this technique are
required for two reasons: either accurate estimation
of the execution conditions is hard to determine
statically, in which case the optimisations will be
made soon after execution begins, or else
conditions are as expected during initial execution
of the program but they change later requiring an
adjustment of the statically chosen tradeoff between
space and time.

The complete optimisation technique may be
summarised in the following steps.

• An optimisation strategy for a system is
developed. That is, the execution profiles and
analysis mechanisms required to identify
particular code optimisations are determined.
An initial implementation of the system is
constructed which is optimised for the
expected execution conditions.

• The initial system is augmented with code to
record execution profiles.

• Execution of the system is initiated.
Execution profiles are recorded during system
execution.

• Once a body of profiling data has been
gathered, the analysis mechanism uses the
profiles to determine whether particular code
optimisations should be performed.

• According to the results of the analysis, code
segments may be optimised by recompiling
the source code under a new compilation
strategy. Alternatively, the source code may
be transformed followed by recompilation.

• The new equivalent code segments are linked
into the running system.

• As execution continues, the new segments
will be used when appropriate. Profiling may
continue as an on-going process.

Implementation is possible in traditional systems
that support files as the only persistent data type
and isolate from one another the processes of code
construction, compilation, linking and execution,
e.g. Unix [RT78]. However, this paper
demonstrates that a persistent programming system
provides a more appropriate base technology for
implementation of the technique. The remainder of

this section describes the technique in greater detail
and illustrates both its benefits and disadvantages as
well as the system characteristics required for a
useful implementation.

2 . 1 . 1 Determining an optimisation
strategy

Code segments within a system are identified which
cannot be implemented statically in such a way as
to ensure optimal execution. The dynamic
information that must be collected in order to effect
an improved implementation is determined.
Analysis and optimisation techniques are designed
which operate over both statically and dynamically
gathered information to produce an optimised
implementation.

There are two distinct styles of optimisation
considered here that both use the same technique, as
follows:

• Optimisations constructed by the system
programmer to be used to improve the
algorithms encoded in the system source code.

• Optimisations constructed by the compiler
writer to improve the code generated by the
compiler for given language constructs.

2 . 1 . 2 Recording execution profiles

Profiling code is added to the system at positions
where the dynamic information required for the
optimisation can be discovered. The code records
the information in associated profiling data
structures. There are two situations in which
profiling code is added, according to the two distinct
styles of optimisation described above:

• The programmer may add profiling routines
as part of the original source code.

• The compiler may automatically augment
compiled code with profilers to gain
information about the execution of particular
language constructs.

The profiling data structures must be available to
all stages of the technique, as follows.

• They are directly or indirectly included in the
source code during the construction process.

• They must be retained across multiple
executions of the code that invokes the
profiles to ensure that a wide range of
execution conditions are recorded.

• They must be available for analysis.
• They may be required during the optimisation

process.

The efficiency of the profiling operation should be
considered to avoid significant degradation of
system performance, a requirement that restricts the
class of profiles that can successfully be recorded.

2 . 1 . 3 Discovering potential
optimisations

Possible optimisations are discovered by analysing
the profiles according to the strategy developed at
the start of the process. The analysis is performed
using a cost function which trades the cost of an
improvement in terms of construction and storage
of the new code segment against the benefits gained
during its subsequent execution.

The cost function requires a certain amount of
information in order to make an accurate
assessment on possible optimisations. This
information may consist of both data collected
during execution and data gathered statically by the
programmer or compiler. The static information
may be bound into the cost function; the dynamic
data is passed as a parameter on the function's
invocation. A good optimisation strategy
maximises the amount of information gathered
statically whilst minimising the requirement for
dynamically gathered data.

Another important consideration affecting the cost
function is the time at which the system is checked
for possible optimisations. There are two
possibilities here.

• During system execution. Analysis may be
triggered by conditions experienced during
execution. The trigger code contains or
makes bindings to the appropriate cost
function and profiles. The expense of cost
function execution is critical as it takes place
during system execution.

• During quiescent points in execution.
Enhancer programs may browse over profiles,
passing them to the associated cost functions
for analysis. Using this technique the
expense of the cost function is not critical.

2 . 1 . 4 Optimising code segments

As described earlier, optimisations are based on a
recompilation of the source code. To do this, the
source code for the executable code segment in
question must be found. There are two techniques
for recompilation, as follows.

• The same compilation strategy may be used
against the source code which has undergone
some transformation.

• A new compilation strategy may be used
against unchanged source code.

The exact optimisation may be known statically;
otherwise the transformation or the new strategy to
be used is dependent on data recorded in the
execution profiles.

The original executable code segment may be
handled in two ways, as follows.

• If the newly constructed code is always more
efficient than the original code then the latter
may be discarded.

• If the newly constructed code is more efficient
than the original only in certain conditions
then both versions should be retained. The
source code is augmented prior to compilation
with switching code which chooses the
appropriate code version according to the
prevailing conditions. Repeated
optimisations may produce many versions:
the switching code must be extended as new
versions become available. Such a situation
is shown in Figure 1.

.

.

.

code
invocation

execution
conditions

switching
code

segment
optimised
version 2

optimised
version 1

original statically
constructed code

Figure 1 Switching between a number of
equivalent code segments

2 . 1 . 5 Linking and executing new
segments

Optimised code segments are linked back into the
application. According to the time of
optimisation, this may occur either during or in
between executions of the application.

Depending on the strategy used for combining old
and new code versions, the new code segment will
be invoked when the execution conditions are
appropriate. Mechanisms for incremental loading
of individual code segments will be required as the
body of application code is repeatedly extended with
new code segments.

Some optimisations may require no further
profiling of the associated code. This will occur
when no further improvements can be made to the
code. Otherwise the profiling code remains to
provide continuing records of execution conditions;
the optimisation cycle is ongoing, initated by off-
line browsing mechanisms or by trigger code
within the system.

2 . 2 Assessing the Technique

The advantages of the technique may be
summarised as follows. An executing system can
be incrementally improved as knowledge is gathered
about its execution characteristics. Analysis

concerning the requirement for and the type of
optimisation is based on data collected during
execution. Optimal code may be generated for
frequently occurring execution conditions.

Unlike traditional optimisation mechanisms which
restrict or replace segments of the code, the
technique extends the body of code making up a
system with new segments which execute
optimally in conditions not statically provided for.

Optimisations are made to the executable code of
running systems, either during active execution or
during quiescent phases. Complete system
shutdowns and reconstruction of executable images
to include the optimised components are not
required.

The optimisation technology may be used both by
the system programmer or the compiler writer to
optimise the code they construct. Both have the
same problems: they are unable to ascertain which
of the potentially huge number of possible
conditions will occur during execution; they do not
have the resources to optimally provide for all of
them.

Potential disadvantages of the technique are as
follows. The operation of the system will be
slowed down by the profiling code. The
complexity of the profilers should be minimised by
maximising the static information that can be
included in the cost functions. In addition the
profilers may be switched off to allow information
to be gathered on a regular but not continuous
basis.

Optimisation during active execution will also
affect system performance. This must be traded
against the immediate benefits that the
optimisation may provide.

Switching between code versions may become
expensive as the number of versions increases.
This extra cost could become part of the cost
function that determines whether new optimisations
should be made. There may be occasions where a
particular code version is not frequently used and
can be removed from the switching loop until
conditions change.

The choice of optimisation is critical to the success
of the technique - the cost of profiling and choosing
between code versions must be small relative to the
savings obtained from the optimisation.

2 . 3 Requirements for
Implementation

In order to implement this technique, profiles and
new code forms must persist across invocations of
individual code fragments [AM85], otherwise the
knowledge gained during execution and the benefits
of optimisations will be lost. Both profiles and
code forms are potentially highly structured objects:
the profiles must be structured to permit fast access
to and recording of profiling information; the code

forms will in general be structured due to the
requirements for incremental linking and loading.
The source code of individual code segments must
be available during execution. Source code is
represented as a data type in the system which may
be manipulated as required. Retaining source code
is not trivial in the presence of first-class code
objects where references to free identifiers must be
represented [KCC+92].

A compiler is used during execution by the
optimiser to construct new executable
representations. For some optimisations, the
optimiser can adjust the code generation strategies
used by the compiler according to dynamically
gathered data. The compiler must be able to
construct new code segments which operate over
the same data as did the original segments.

New code segments are incrementally linked into a
running system. In general this requires structured
executable forms [ABC83], although mechanisms
do exist for limited incremental linking over flat
executable forms [QL91].

Code segments are incrementally loaded in
situations where there is a choice between different
code versions. This becomes a requirement where
the number of code versions from which to choose
is large.

To summarise, implementation of the technique
will be simplified by the availability of two key
features: an integrated program construction,
compilation, linking and execution environment as
well as the persistence of data values including
source and executable code. These features are
typically found in persistent programming systems
and in object-oriented systems. Such systems are
therefore well-suited to implementing the
technique, a particular example of which is now
described.

3 . Implementation in an
orthogonally persistent
system

A persistent environment is a type safe repository
for structured data including source and executable
code objects. All objects have a unique identity.
The referential integrity of the environment ensures
that links between objects are maintained
[MBC+93]. The contents of the environment may
persist for as long or short as required, irrespective
of their type.

The software phases of code construction,
compilation, linking and execution may all be
supported within the persistent environment. The
compiler is a first class procedure available within
the environment. Incremental linking to executable
code objects can be supported using typed persistent
locations as described in [DCC92]. The underlying
persistent storage mechanism supports incremental
loading [Bro89].

The mechanisms used in a persistent system to
implement each stage of the technique are presented
in this section. The following example which
optimises the implementation of polymorphism
will be used to illustrate a particular style of
optimisation within the wide range of possibilities
offered by the technique. The description of the
optimisation is restricted in places to fit the scope
of the paper. Full details may be found in [Cut92].

3 . 1 Optimising polymorphism

3 . 1 . 1 Designing a strategy for
optimising a polymorphism
implementation

Polymorphism in a programming language is the
ability to write programs that are independent of the
form of the data values that they manipulate. Thus
it provides an abstraction over the form of the data
which is often categorised by type. The code
generated for a polymorphic context must execute
correctly irrespective of the format of the data over
which it operates.

In the persistent polymorphic language Napier88
[MBC+89], a polymorphic bubblesort function
may be written and called as follows:

let sort = proc[t](
v : *t ;
lessThan : proc(t,t -> bool))

begin
let lower= lwb[t](v)

for outer = lower+1 to upb[t](v) do
for inner = outer to lower+1 by -1 do

if lessThan(v(inner -1),v(inner)) do
begin

! Swap the two values over
let temp = v(inner - 1)
v(inner - 1) := v(inner)
v(inner) := temp

end
end

let numbers = vector @1 of
[2,6,4,7,3,1,8,0]

let intLessThan = proc(a,b : int -> bool)
 a < b

sort[int](numbers,intLessThan)

Figure 2 Napier88 polymorphic identity procedure.

The polymorphic function sort takes a vector of
any type t and a comparison function over values of
type t and sorts the elements of the vector in place.
In the final line of Figure 2, sort is called with the
quantifier t specialised to int and the specialised
procedure applied to a vector of integers and a
comparison procedure operating over integers.
Polymorphic values are manipulated inside the

procedure at the point of comparison and when
values are swapped between locations.
Implementations of polymorphism [MDC+91]
trade speed of execution against the space required
to store code implementing polymorphic functions.
The fastest execution speed is gained when different
executable code is constructed for each different
specialising type. This gives the efficiency of the
equivalent monomorphic procedure. Ada generics
are implemented using this technique [DOD83].
The drawback is that there may be a very large
number of specialising types and hence a
correspondingly large number of code versions. All
specialisations are known statically in Ada and so
the technique is feasible; in the presence of
anonymous procedure values it may be impossible
to determine statically the number and type of code
versions required.

At the other end of the space/time tradeoff, a single
executable version of a polymorphic procedure may
be generated in a system which manipulates all data
in one uniform format. This technique is used to
implement the polymorphism of ML [MCP88].
Whilst efficient in terms of space, speed of
execution is reduced by the enforcement of a
uniform representation; in particular, arithmetic
operations may be affected as they depend on
efficient data representations.

The problems of polymorphism implementations
are well suited to the optimisation technique
described in this paper, since they involve tradeoffs
between space and execution speed that may change
over time as knowledge of a system is gathered.
Optimisation of polymorphism within the
Napier88 system will be examined here. The
fastest implementation, where the monomorphic
form is constructed, cannot be used in general as
the particular monomorphic forms required are not
known statically and it is too expensive to
construct them all. Instead, an implementation is
initially used which operates under all
specialisations with slightly reduced space
efficiency compared with the ML technique but
with improved speed. The implementation is
described in detail in [MDC+91]. In this context it
is sufficient to note that the implementation
represents an good tradeoff between space and time
at compilation when the specialising types for a
given procedure are unknown

The Napier88 implementation is augmented with
profiling code to record the particular
specialisations that occur during execution. When
a representative body of profiling data has been
gathered, analysis will indicate which
specialisations occur frequently enough to merit
construction of the appropriate optimal
monomorphic form. Switching code is added to the
procedure to choose and call the appropriate
monomorphic versions or if none is available to
call the less efficient polymorphic version.

Figure 3 shows the positions of the three
implementations used in Ada, ML and Napier88 on
a graph of space efficiency against speed efficiency.
As Napier88 polymorphic code is optimised using
the technique described here, its space efficiency is
reduced whilst its speed efficiency for the affected
specialisations attains that of the Ada
implementation.

•
ML Napier88

Ada

N88 optimisations

Speed efficiency

Space
Efficiency

•

•

••
••

Figure 3 Comparing different
implementations.

3 . 2 Implementing the polymorphic
optimisation

Each phase of the optimisation technique will now
be described with reference to implementation in a
persistent environment. The implementation of the
polymorphism optimisation will also be described
at each stage.

3 . 2 . 1 Adding execution profilers

Source code is augmented either with code that
directly updates profiling data structures or with
calls to profiling procedures. The profiling
structures are language data types accessible to any
program. They are held in the persistent store and
so persist across invocations of the programs that
access and update them. Profiling code may be
directly linked to profiling structures and so there is
no requirement for additional code to make bindings
during execution between the running program and
the persistent profiling structures.

The same method is used both by the compiler and
the programmer. The compiler additions are
automated and included with every instance of a
particular language construct under consideration for
optimisation. By contrast, those manually added
by the programmer are specific to the particular
code under construction.

The polymorphism optimisation affects the code
generation strategy used by the compiler. Code is
therefore automatically added by the compiler to
each polymorphic procedure to record the number
and type of calls.

The data associated with each kind of specialisation
is recorded in instances of the data type shown in
Figure 4. An instance of type profile is created for
each different specialisation of a particular
procedure. A representation of the specialising
types is held in the types field in an instance of the
type typeReps, the details of which are not of
interest here. Each time the same call is made the
calls field is incremented.

type profile is structure(
types : typeReps ;
calls : int)

Figure 4 Data type to hold profiling
information.

The code of Figure 3 is transformed into that of
Figure 5.

let profiles = mkList[profile]()

let compiledSort = proc[t](
v : *t ;
lessThan : proc(t,t -> bool))

begin
countCalls(profiles,mkTypeReps[t]())

! remainder of the procedure
! as given in Figure 2

end

Figure 5 Polymorphic procedure
augmented with profiling code.

profiles is initialised to be an empty list of element
type profile. The procedure countCalls has been
statically constructed and records the appropriate
details about execution of the procedure. If
countCalls fails to find a profile structure for the
given specialisation then a new one is constructed
and inserted into the list.

Lists are used here for simplicity; a faster access
data structure is used in practice.

3 . 2 . 2 Finding and examining execution
profiles

An enhancer procedure is constructed for each
optimisation within the system. The enhancer
contains the information required to find relevant
profiles and the associated code. In the case of a
manual optimisation included by the programmer,
the enhancer contains direct links to both code and
profiles. The mechanism for finding the locations
of automatically generated profiles and code
constructed by the compiler is encoded into the
enhancer for that optimisation.

The enhancer also contains links to the appropriate
cost function and optimisation procedure. With
access to the code, the profiles, the cost function

and the optimiser, the enhancer is in a position to
check for and initiate optimisations when required.
The type of the enhancer may be written as

proc(database, costFn, optimisationFn)

where database is the part of the environment over
which the enhancer will operate.

The enhancers may be called during quiescent
periods of system execution. In this case enhancer
procedures may be registered with a central enhancer
mechanism which organises the execution of each
individual enhancer when appropriate. The
enhancers may also be called directly from system
code during execution. Calls may be added to the
source code of the system using the same
techniques as for the addition of profiling code.
The call to the enhancer may depend on an
evaluation of the conditions experienced during
execution.

Cost functions are first class procedures in the
language that are generated during construction of
code, either automatically by the compiler or
manually by the programmer. They may contain
direct links to information known statically about
the code to be optimised or else such information
may be passed as parameters.

Polymorphic procedures are marked during
compilation. Where polymorphic optimisations
take place during quiescent times, the enhancer for
the polymorphic optimisation browses the
persistent environment using object store browsing
technology [DB88] looking for these marked
procedures. The profiling data structures may be
retrieved from the closure of the procedures and
passed to the cost function of the polymorphic
optimisation.

The cost function determines which monomorphic
versions of the procedure are worth constructing,
according to a tradeoff over the following costs:

• The extra time spent executing polymorphic
specialisations in comparison to their
monomorphic counterparts.

• The extra space used to store monomorphic
versions.

• The expense incurred in constructing a
monomorphic version.

A new monomorphic version is constructed when
the cost in execution speed incurred using the
polymorphic version is shown to be significant in
comparison to the space and time required to
construct and store a monomorphic version.

The extra expense of executing a polymorphic
version in comparison to the equivalent
monomorphic version is caused by the execution of
operations that depend on the type information
passed as a tag to the encapsulating procedure. A
record of the number of executions of these
operations is required in order to determine the
difference in efficiency between the polymorphic

and monomorphic versions. Records of this kind
may only be taken during execution of the program
being measured and would significantly affect the
performance of the program.

By making judicious choice of which execution
profiles to collect and which static information to
bind into the cost function, a good approximation
to the exact cost of a polymorphic specialisation
can be made without incurring a significant
expense. The static information available to the
cost function is the number of operations in the
code that manipulate polymorphic values. This
may be used to good effect when combined with the
number of executions, but is heavily dependent on
the flow of control within the program.

The cost function combines the static and dynamic
information to estimate the total cost of the
associated specialisation and compares this cost
with a threshold level to determine whether
optimisation should take place.

3 . 2 . 3 Optimisation and relinking

The technique optimises code by performing source
code transformations followed by recompilation. In
a persistent system, the smallest manipulable unit
of code is typically the procedure. The granularity
at which an executable system may be manipulated
is therefore the procedure level. Procedure source
code may be attached to executable procedure
values: one format for the source is a list of
lexemes and associated symbol tables for outer
scope references.

In a persistent programming environment a
compilation function is available to be used by any
program. Where compilation strategies must be
altered, the compiler may itself be available for
modification.

Type-safe incremental linking is supported using
the architecture described in [DCC92], which is
based on the use of shared typed persistent
locations.

The code transformation process may allow the
combination of old code with new in order to
support the style of optimisation where new code is
an alternative to and does not replace the original
code.

In the polymorphism optimisation, when the cost
function indicates that a particular optimisation
should be performed, the optimiser procedure is
passed the source code of the procedure along with
the profile structure for the relevant specialisation.

The optimiser needs to know how to change the
source code: this is given by the typeReps encoding
contained in the profile structure. Based on the tag,
the optimiser can transform the polymorphic
procedure into an equivalent monomorphic
procedure. For example, given the polymorphic id
procedure and an indication that an integer
monomorphic form should be constructed, the

source code transformation of Figure 6 would be
performed. In this particular example, the body of
the procedure is unaffected by the transformation;
were the body to contain references to the quantifier
type t, they would also be transformed.

proc[t](v : *t ; lessThan : proc(t,t ->
bool))
begin
...
end

=>

proc(v : *int ;
lessThan : proc(int,int->bool))

begin
...
end

Figure 6 A code transformation.

The transformed source is compiled to give a new
executable form optimal for integer specialisations.
To link the new code into the running application,
the profile type and the transformed procedure given
in Figure 5 must be adjusted. The earlier versions
were simplified to avoid confusion. The profile
structure is extended with a field to hold a procedure
code vector, as shown in Figure 7. Before a
monomorphic optimisation for the associated type
format this is a nil vector. Afterwards it holds the
specialised monomorphic code form.

type profile is structure(
tags : tagCombination ;
calls : int ;
monoVersion : codeVector)

Figure 7 A data structure to hold profiles
and optimised code forms.

let profiles = mkList[profile]()
let compiledSort = proc[t](

v : *t ;
lessThan : proc(t,t -> bool))

begin
let monoVersion =

countCalls(profiles,mkTypeReps[t]())
if monoVersion = nilCodeVector then
begin

! The initial implementation of
! the procedure is used
..........

end
else monoVersion(v,lessThan)

end

Figure 8 Polymorphic procedure
augmented with profiling and switching

code.

The transformed polymorphic procedure is extended
with code to choose between monomorphic
versions as shown in Figure 8.

The procedure countCalls is extended to check
whether a monomorphic version has been
constructed for the given type representations. If
one exists then it is returned, otherwise a fail value,
nilCodeVector is returned. Profiling information is
recorded as usual.

3 . 2 . 4 Future execution

Future execution will benefit from the
optimisations made by the enhancers provided that
the conditions during execution do not change
radically. Continued profiling will take account of
changing conditions. The values in the profiling
structures may be reinitialised each time around the
enhancement loop. This depends on whether
optimisation is dependent on cumulative records or
just the experience of the last enhancer time
segment.

In the polymorphism optimisation, it may be
sensible to reinitialise the profiles on each
enhancement cycle to prevent infrequently-used
specialisations from eventually being optimised.
The time between enhancer invocations may be an
input to the cost function. Continued profiling
will indicate when new data types are used against
existing polymorphic code allowing the system to
adjust accordingly. If monomorphic forms are
shown to be falling into disuse they may be deleted
if space consumption is important.

3 . 2 . 5 Measuring the polymorphism
benefits

An extended version of the implementation of
polymorphism has been implemented in Napier88
and is fully reported in [MDC+91]. The version
given here is restricted in order to keep the
description of polymorphism and its
implementation in Napier88 within the scope of
the paper. Full details of the optimisation
mechanism are found in [Cut92].

The mechanism appears overly complex when
applied to a procedure as simple as the sort
procedure; however using that procedure kept the
example short. The implemented version of the
mechanism requires less switching code to be
executed in general. Additionally, in typical
polymorphic code there are a number of operations
which manipulate polymorphic values, each of
which is more expensive that its monomorphic
equivalent. Examples are the conversion of data
between polymorphic and monomorphic formats,
access and update of data structures that have fields
of an abstracted type and equality operations, all of
which require knowledge of the underlying data's
shape.

Figure 9 shows some timings of the sort procedure
measured in units of processor time allocated to the

Napier88 process when running on a SUN Sparc
10. The exact timings are not important; it is the
percentage speed increase that is of interest. The
measurements compare the polymorphic
implementation when specialised to integer over a
number of random integer vectors against the same
procedure once it has been optimised for the integer
specialisation. The increase is of the order of 20-
25%.

vector
size

polymorphic
version

optimised
version

%
reduction

100 57 42 26

150 132 98 19

200 233 173 26

Figure 9 Percentage speed increases over sort

A detailed analysis of the polymorphism
optimisation mechanism in action is beyond the
scope of this paper. However in general use over a
range of polymorphic procedures, speed increases
for polymorphic code have typically been in the
range 25-35%. This is obviously dependent on the
number of polymorphic operations that occur
within polymorphic procedures. In the sort
example above, the number of polymorphic
operations is low in comparison to the required
switching and profiling. Further experimentation
is required to tailor the cost function to the optimal
trade-off between speed improvements and the cost
of constructing monomorphic code.

4 . Other examples of the
technique

Query optimisation

Query optimisers traditionally operate during
compilation of the query on the basis of the
contents of the database which is statically
available. In situations where queries are
constructed independently of the data over which
they operate or where executable versions of queries
are long-lived, query execution will become non-
optimal when the contents of the database change
significantly.

The optimisation technique may be used here to
optimise queries on an on-going basis. Periodically
the database may be examined to determine whether
its contents affect the efficiency of existing queries.
Such information may be gathered using profilers
embedded in the query code. Where query efficiency
is deteriorating, the query code may be restructured
and recompiled according to the changed conditions
in the database.

Optimisation of method code in object-
oriented systems

The objects of object-oriented systems consist of a
number of methods operating over encapsulated

data. The state of a running system is recorded in
the data items encapsulated within each object.
Optimisations to executing object-oriented systems
must ensure that this data is retained.

The optimisation technique may be applied to these
systems. Profiling code is added to method code in
order to record details of system execution.
According to analysis of the profiles, method code
may be transformed and recompiled without
affecting the encapsulated data held in the objects.

Data optimisation

The emphasis in this paper has been on the
optimisation of code segments. The general
mechanism underlying the optimisation technique
is also suited to dynamic data optimisations. In
order to support a data optimisation such as
clustering, the system may be augmented with
profiling code to record those data items that are
accessed together. The enhancer program for such
an optimisation communicates with the store
manager, giving an indication of those data items
that are frequently accessed at the same time. Care
must be taken to avoid an effect similar to
thrashing in paging systems, where each section of
a system requires a different clustering over the
data.

5 . Conclusions
This paper has described an technique for
incrementally optimising executing systems. The
particular benefits of the technique are as follows:

• Executable systems can be incrementally
improved as knowledge is gathered about their
execution characteristics.

• The technique allows a body of executable
code to be expanded with new code segments
to handle conditions not provided for during
construction of the original code.

• Optimisations are made to running systems.
System shutdowns for the installation of
optimised code segments are not required.

• Optimisations affect only the code in a
system. This is particularly useful in long-
lived data-intensive systems or in systems
where the code is constructed in isolation
from the data over which it operates.

Care must be taken when applying the technique to
ensure that system performance is not significantly
affected by the introduction of profiling code and
on-line optimisations.

Instances of the technique may be implemented in
systems supporting the persistence of structured
data including code across the activities of software
construction, compilation, linking and execution.
Persistent programming environments and object-
oriented systems are particularly suited to the
technique.
The optimisation of polymorphism described in
Section 3 has been implemented in the persistent

programming environment of Napier88 [KCC+92].
Typical speed-ups are of the order of 30%. Further
optimisations for the language implementation are
currently under consideration.

References
[AM85] Atkinson, M. P.; Morrison, R.

“Procedures as Persistent Data
Objects,” ACM TOPLAS 1985, 7 iv,
539-559.

[BDH91] Benzaken, V.; Delobel, C.; Harrus, G.
“Clustering Strategies in the O

2

Object-Oriented Database System,”
ESPRIT BRA Project 3070 FIDE,
1991.

[BOP+89] Bretl, B.; Otis, A.; Penney, J.;
Schuchardt, B.; Stein, J.; Williams, E.
H.; Williams, M.; Maier, D. “The
GemStone Data Management System,”
In Object-Oriented Concepts ,
Applications, and Databases; W. Kim
and F. Lochovsky, Ed.^Eds.; Morgan-
Kaufman: 1989.

[Bro89] Brown, A. L. Ph.D. Thesis, St
Andrews, 1989.

[Car85] Cardelli, L. “Amber,” AT&T Bell
Labs, Murray Hill, 1985.

[Car89] Carey, M. “The Exodus Extensible
DBMS Project: An Overview,” In
Readings in Object-Oriented Databases;
Morgan-Kaufmann: 1989.

[CD91] Cluet, S.; Delobel, C. “Towards a
Unification of Rewrite Based
Optimisation Techniques for Object-
Oriented Queries,” ESPRIT BRA
Project 3070 FIDE 91/19, 1991.

[Cut92] Cutts, Q. I. Ph.D. Thesis, St
Andrews, 1992.

[DB88] Dearle, A.; Brown, A. L. “Safe
Browsing in a Strongly Typed
Persistent Environment,” Computer
Journal 1988, 31, 540-544.

[DCC92] Dearle, A.; Cutts, Q. I.; Connor, R.
C. H. “An Application Architecture
Using Type-Safe Incremental
Linking,” University of St Andrews,
1992.

[DOD83] “Reference Manual for the Ada
Programming Language,” U.S.
Department of Defense, 1983.

[GR83] Goldberg, A.; Robson, D. Smalltalk-
80: The Language and its

Implementation; Addison Wesley:
Reading, Massachusetts, 1983.

[KCC+92] Kirby, G. N. C.; Connor, R. C. H.;
Cutts, Q. I.; Dearle, A.; Farkas, A.
M.; Morrison, R. “Persistent Hyper-
Programs,” In Persistent Object
Systems; A. Albano and R. Morrison,
Ed.^Eds.; Springer-Verlag: 1992; pp
86-106.

[KCC+92] Kirby, G. N. C.; Cutts, Q. I.; Connor,
R. C. H.; Dearle, A.; Morrison, R.
“Programmers’ Guide to the Napier88
Standard Library, Edition 2.1,”
University of St Andrews, 1992.

[MBC+89] Morrison, R.; Brown, A. L.; Connor,
R. C. H.; Dearle, A. “The Napier88
Reference Manual,” University of St
Andrews, 1989.

[MBC+93] Morrison, R.; Baker, C.; Connor, R.
C. H.; Cutts, Q. I.; Kirby, G. N. C.
“Approaching Integration in Software
Environments,” University of St
Andrews, 1993.

[MCP88] MacQueen, D.; Cardelli, L.; Paulson,
L. "Polymorphism" In ML/LCF/Hope
Newsletter; 1988.

[MDC+91] Morrison, R.; Dearle, A.;
Connor, R. C. H.; Brown, A. L. “An
Ad-Hoc Approach to the
Implementation of Polymorphism,”
ACM Transactions on Programming
Languages and Systems 1991 , 13 ,
342-371.

[PS88] “PS-algol Reference Manual, 4th
edition,” Universities of Glasgow and
St Andrews, 1988.

[QL91] Quong, R.; Linton, M. “Linking
Programs Incrementally,” A C M
TOPLAS 1991, 13, 1-20.

[RT78] Ritchie, D. M.; Thompson, K. “The
UNIX Time-Sharing System,” The
Bell System Technical Journal 1978,
63, 1905-1930.

[SCW85] Schaffert, C.; Cooper, T.; Wilpot, C.
“Trellis Object-Based Environment
Language Reference Manual,” DEC
Systems Research Center, 1985.

[Tha86] Thatte, S. M. In A C M / I E E E
International Workshop on Object-
Oriented Database Systems; Pacific
Grove, California, 1986; pp 148-159.

	Abstract
	1. Introduction
	2 . The General Optimisation Technique
	2 . 1 Overview of the Technique
	2 .1 .1 Determining an optimisation strategy
	2 .1 .2 Recording execution profiles
	2 .1 .3 Discovering potential optimisations
	2 .1 .4 Optimising code segments
	2 .1 .5 Linking and executing new segments

	2 . 2 Assessing the Technique
	2 . 3 Requirements for Implementation

	3 . Implementation in an orthogonally persistent system
	3 . 1 Optimising polymorphism
	3 .1 .1 Designing a strategy for optimising a polymorphism implementation

	3 . 2 Implementing the polymorphic optimisation
	3 .2 .1 Adding execution profilers
	3 .2 .2 Finding and examining execution profiles
	3 .2 .3 Optimisation and relinking
	3 .2 .4 Future execution
	3 .2 .5 Measuring the polymorphism benefits

	4 . Other examples of the technique
	5. Conclusions
	References

