
This paper should be referenced as:

Connor, R.C.H., Brown, A.B., Cutts, Q.I., Dearle, A., Morrison, R. & Rosenberg, J. “Type
Equivalence Checking in Persistent Object Systems”. In Implementing Persistent Object
Bases, Dearle, A., Shaw, G.M. & Zdonik, S.B. (ed), Morgan Kaufmann (1990) pp 151-
164.

Type Equivalence Checking in Persistent Object
Systems

Connor, R.C.H., Brown, A.L., Cutts, Q.I., Dearle, A.,†
Morrison, R. & Rosenberg, J.¥

University of St Andrews, Scotland
† University of Adelaide, Australia

¥ University of Newcastle, Australia

email: {richard,ab,quintin,ron}@cs.st-and.ac.uk
al@adelaide.edu.au

johnr@nucs.nu.oz.au

Abstract
Two common methods of determining type equivalence in programming languages
and database systems are by name and by structure. In this paper we will show
that both mechanisms are myopic views of the type equivalence required for
persistent systems. Methods of representing schema types within a persistent store
will be discussed, and two possible implementations will be given. Finally
discussion and measurements of the efficiency trade-offs for both representations
will be presented.

1 Introduction
Type systems provide two important facilities within both databases and programming
languages, namely data modelling and data protection. Recent developments in type systems
have greatly increased their expressive power while retaining their traditional safety. These
developments include parametric and inclusion polymorphism [CW85], abstract and existential
types [MP85,CDM90], bulk data types such as sets, lists and arrays etc.[AM85], classes as
type extensions [AGO89] and static constraint checking [SS89,SWB89]. One future goal for
persistent programming languages is to develop a type system that will accommodate the
structures required for both modelling and protection in less traditional database applications
such as scientific programming, engineering applications and office automation, whilst also
capturing the type description of more conventional database systems.

Our extended view of type systems allows the traditional database schema to be regarded as a
type. We are concerned in this paper with how this schema type is manipulated efficiently by
the persistent system. Central to this is how the schema type is represented within the persistent
system and how type checking is performed using the schema type.

Traditional type checking within programs and type checking within the persistent store are
rather different animals. Type checking within a program may entail a type checker in building
a representation of the type, inferring some types, checking for the equivalence of the types and
some compatibility checking on the types for coercions and subtype polymorphism, for
example. Within the persistent store type checking is generally only concerned with checking
the equivalence of two types for which representations already exist. For the moment we
restrict this to an exact equivalence check and remark that subtype checking is somewhat more
complex [ACP89].

Two common methods of determining type equivalence are by name and by structure. We will
define these terms for clarity later in the paper and go on to show that both mechanisms are
myopic views of the type equivalence that is required for persistent systems. To do this we will
discuss the issues involved in schema type evolution, the distribution of the schema type in a
distributed system, the merging of independently developed schema types, late binding to the
schema type and how programs partially specify the section of the schema type of interest. We
will then discuss the representation of the schema type within a persistent store, and present
two suitable methods of representation. A comparison of these methods is given, along with
measurements of the efficiency of both representations.

2 Models of Type Equivalence Checking
In database systems and programming languages, two methods of checking type equivalence
are common. These are by name and by structure. The definitions of these two mechanisms
given below are taken from [ADG89]. They are:

• in name equivalence, two values have equivalent types if the types share
the same declaration, and

• in structural equivalence, two values have equivalent types if the types
have isomorphic structures.

We will use these definitions to highlight the issues in this paper but note that most systems do
not adopt such extreme positions for all their type equivalence checking. Many compromises
can be made some of which will be exposed later.

It should also be noticed that the issue of static and dynamic checking is not of importance
here. The separation between compile and run time can be obscure in a persistent system and
does not affect the work involved in type equivalence checking. We are however still
concerned with efficiency. We would prefer our type checking to be fast since depending upon
the usage of the system it may have to be performed frequently. It is generally accepted that
name equivalence is fast and structural equivalence is slow.

For these equivalence checking categories we will investigate type checking both within
programs and within a persistent object store, which may be centralised or distributed.

2 .1 Name Equivalence Checking

2 . 1 . 1 Name Equivalence Checking within Programs
The programming language Ada [Ich83] is a good example of a system that primarily uses
name equivalence checking. An example is the definitions of the types ANIMAL and
VEHICLE given below:

type ANIMAL is record
Age : INTEGER;
Weight : REAL;

end record;

type VEHICLE is record
Age : INTEGER;
Weight : REAL;

end record;

In structural terms, ANIMAL and VEHICLE define the same set of values from the value
space, namely the labelled cross product Age : INTEGER x Weight : REAL. However, in

name equivalence terms values of type ANIMAL are not type compatible with values of type
VEHICLE. There are advantages and disadvantages to this.

One disadvantage is that anonymous types are not permissible in name equivalence and indeed
Ada has to use an ad hoc mechanism to achieve the same effect. For example, it is not possible
with strict name equivalence to write a procedure that will accept a parameter of a particular
shape, such as a one dimensional array, even if it has a fixed size. The declaration,

procedure Add-elements (A : array (1..6) of INTEGER);

is achieved in Ada by having an anonymous type mechanism for the structure matching on the
array, not by name equivalence. Such a disadvantage is only a minor drawback since it only
takes a type definition to resolve the problem. For example

type INT_ARRAY_ONE_SIX is array (1..6) of INTEGER;
procedure Add-elements (A : INT_ARRAY_ONE_SIX);

At worst strict name equivalence is verbose. However, variable size arrays do cause problems
for strict name equivalence checking since a different type name and procedure declaration are
required for each size. Ada uses another ad hoc mechanism, that of unconstrained arrays, to
overcome this.

Subtype checking, as used for inclusion polymorphism in object oriented languages, can be
defined in name equivalence systems by explicitly stating the relation of a subtype to its
supertype. For example

type LEGGED_ANIMAL isa ANIMAL with (No_of_legs : INTEGER);

This extends the supertype definition and ensures that LEGGED_ANIMAL is a subtype of
ANIMAL. The mechanism is restrictive in that the structure of the inheritance hierarchy is
explicit and costly to reconstruct.

With structural equivalence [Car84] one type is only a subtype of another if it has all the
attributes of the supertype and possibly some more. The corresponding common attributes
must be in the subtype relation themselves. To check that one type is a subtype of another, the
structure of the two types constrained by the subtype relation must be checked. For example,
consider the following declaration of LEGGED_ANIMAL :

type LEGGED_ANIMAL is record
Age : INTEGER;
Weight : REAL;
No_of_legs : INTEGER;

end record;

In this case LEGGED_ANIMAL is a subtype of ANIMAL implicitly. This allows arbitrary
construction of the inheritance hierarchy but requires a structural type check to validate that
ANIMAL and LEGGED_ANIMAL are in the subtype relation.

Problems similar to the above occur in languages with parametric polymorphism where the
type of the specialised form is deduced from the polymorphic form. This can be regarded as a
type coercion or type inference but requires a structural check.

The major advantage of name equivalence checking is that it is efficient. The check involves
ensuring that two types have the same declaration, which can be reduced to a single word
comparison in most machines. This advantage goes a long way to explaining the popularity of
the scheme within many programming languages.

2 . 1 . 2 Name Equivalence Checking in a Persistent Object Store
Name equivalence checking within a persistent store is based on a dictionary of type names
which contains the schema. Programs producing persistent data extend the schema with the
type of the data before placing the data in the persistent store. Programs using this data must
reuse the type definition contained in the schema type to ensure compatibility of the types. The
dictionary of type names may be one level, tree structured or even a graph depending on the
mechanism used for names in the system. Tree and graph name spaces are essentially
distributed in nature.

The manipulation of the schema may become a major efficiency bottleneck in these systems
especially in the presence of concurrent access. Typical operations on the schema type are:

• adding a type definition,

• removing a type definition,

• altering a type definition,

• using type definitions, and

• merging type definitions.

Adding a type definition to the type schema only causes problems of name clashes within the
dictionary. This is most acute in a flat name space but is not a serious problem since the name
has to be added before the separate compilation of modules using the type can be performed.
Changing the clashing name to an unused one and altering the code for the modules that share
the type description solves the problem.

Removing a type definition from the schema type is more difficult since data of that type may
exist in the persistent store. Removing the type definition would ensure that the data could not
be used again with its original type. Only where the type is abstracted over, such as in
polymorphism, could the data be used. If there is no type abstraction, then either the request to
remove the type is denied, if data of the type still exists, or the data is removed with the type
definition, although perhaps not immediately. This requires the ability to reach all programs
and data that use a particular type, from the type schema itself. This may not be trivial where
data is encapsulated within objects. One interesting aspect of removing types occurs with
mutually recursive types and is similar to the problem of removal of values from mutually
recursive classes in Object-Oriented Databases posed by Atkinson [Atk89]. If the type is
removed what happens to its mutually recursive partners?

The type descriptions within the schema type are used by compilers to generate efficient code
for the manipulation of the data of that type. For example, this may entail generating static
offsets for indexing and means that altering the type requires recompilation of the programs and
data that use that type. As with removing types, this requires the ability to reach all programs
and data that use a type. More interesting, in altering a type definition the system is not
concerned that the alteration is performed on the same type, since that is already established by
identity, but that the alterations are compatible with the existing data. This requires a structural
check.

Using a type description is equivalent to using a name. It depends upon two programs finding
the shared name. Although this may be difficult in a large system, software tools such as
browsers can be used to help.

As the use of the persistent object store grows, the schema evolves and a need arises for
merging definitions. This may occur because mistakes have been made in defining two separate
types that are logically the same and building half a system with each definition or it may occur

in a distributed environment where separate universes are merged. There are a number of
solutions to this problem.

The first point is that merging definitions in a name equivalence scheme requires user
intervention. Since there may be many definitions that are structurally the same the system
cannot decide automatically which of the definitions have to be aliased. Of course, when the
user specifies that two types have to be aliased then the system must check that the types are
compatible for all the existing programs and data. This involves a structural equivalence check.

There are two approaches to aliasing. One method is to recompile all the programs which use
one type with the definitions of the other. Existing data poses a more severe problem, as it
must be read as the old type and re-written as the new. The old type can then be removed.

The recompilation approach to definition merging is only feasible for small object stores since
the time for recompilation in large stores may be prohibitive. A second solution to the problem
is to alter the equivalence check itself. By using an indirecxtion in the type definition the old
value may be overwritten with a new one without altering any of the references to the type.

The problem of name clashes also appears when separate schema types are merged. This is a
problem of user perception of how the system works and not a technological problem. One of
the names can easily be changed in the dictionary and all problems of referring to the correct
type handled by the persistent address translation. The difficulty is that users do not know the
new name and worse still the old one exists with a different definition.

Name equivalence checking lends itself to the partial specification of the type schema since only
names of interest need be used within programs and not the whole schema.

Late binding of programs and data requires that when the program runs the data has an
equivalent type to the one compiled in the program. This is performed by checking the
persistent identifiers of the type names of the program and the data. Thus name equivalence
checking in a persistent object store may be very efficient.

Examples of name equivalence checking over a single persistent object store can be found in
the object oriented database systems ENCORE [SZ86] and 02 [BBB88] and the persistent
programming language Galileo [ACO85].

2 .2 Structural Equivalence Checking

Structural equivalence checking poses a different set of problems for the user and system
architect from name equivalence. In particular, structural equivalence checking may be complex
in terms of time and space and is not even known to be decidable in some cases [Rec90]. Just
as we have shown in the previous section that name equivalence schemes require to use a
structural check for some activities we will show that structural equivalence schemes can use a
naming system to overcome some of the efficiency problems.

First of all we will describe structural equivalence in programs and in persistent stores,
highlighting some of the advantages and pitfalls of the mechanism.

2 . 2 . 1 Structural Equivalence Checking within Programs
The language Napier88 [MBC88] will be used to describe our examples of structural
equivalence since it uses only that form of type equivalence. The type definitions of ANIMAL
and VEHICLE given in Ada earlier would be in Napier88:

type animal is structure (Age : int ; Weight : real)
type vehicle is structure (Age : int ; Weight : real)

These types are equivalent in Napier88 since the type declaration is only regarded as providing
a syntactic shorthand for the set described in the type expression. The set of values in this case
is the labelled cross product Age : int x Weight : real.

The freedom of this mechanism is that it allows type names to be used anywhere a type
expression is valid and vice versa. This means that anonymous types, i.e. type expressions,
may be used. For example, a procedure may be defined that returns the Age field of all records
of type Age : int x Weight : real. This is given below.

let age = proc (x : structure (Age : int ; Weight : real) → int) ; x (Age)

In the above the identifier age is declared to be a procedure which takes a parameter x of type
structure (Age : int;Weight : real) and returns an integer result. The body of the procedure is
the expression x (Age) which is the Napier88 syntax for selecting the Age field of x. The result
is the value of the Age field.

The procedure age will work for values of type animal and vehicle as well as any other aliases
of the cross product type. Notice that this is not polymorphism nor is there any form of
subtyping. It is merely structural equivalence.

Another example of the use of structural equivalence is given in the passing of procedures as
parameters. The procedure integral is given below.

let integral = proc (f : proc (real → real) ; a,b : real ; no_of_steps : int → real)
begin

let h = (b - a) / float (no_of_steps) ; let sum := 0.5 * (f (a) + f (b))
for i = 1 to no_of_steps do
begin

a := a + h
sum := sum + f (a)

end
h * sum

end

In this code fragment the identifier integral is declared to be a procedure that takes four
parameters and returns a real result. It calculates the integral of a function between two limits,
a and b, using the trapezoidal rule with no_of_steps intervals. a, b and no_of_steps are given
as parameters. The first parameter is the function to be integrated. Its name is f and its type is
specified by the type expression proc (real → real). f is a procedure that takes a real
parameter and returns a real result. Any procedure of this structural form may be used.

Thus integral may be called by,

integral (sin, 0.0, 3.14159, 10)

or by

let quadratic = proc (x : real → real) ; (3.0 * x + 4.0) * (x - 3.0)
integral (quadratic, 1.0, 4.0, 30)

without introducing a common type name for f, sin or quadratic. They are all structurally
equivalent by definition.

As mentioned earlier anonymous types also solve problems with array parameters, and
structural equivalence facilitates implicit subtyping and implicit inclusion polymorphism, as
well as specialisation in parametric polymorphism. These benefits must be balanced against the
cost of performing the structural check. This can be substantial, although it is inexpensive

where two types are quite different in structure. It is only where two complicated types are
equivalent or nearly equivalent that the cost may be significant. Of course, as compiler writers
have known for some time, if the user defines a type name and uses that alias instead of an
anonymous expression in all cases, the equivalence check can be resolved by name. This
possibility is usually checked for by compilers before a full structural check is attempted.

2 . 2 . 2 Structural Equivalence Checking in a Persistent Object Store
With structural equivalence checking in a persistent object store there is no requirement for a
centralised type schema. Types are stored with the objects and the schema is effectively
distributed with the objects themselves. Programs producing persistent objects place them in
the persistent store along with a representation of their type. Duplicate type descriptions may
occur but this is unimportant for equivalence checking purposes since it is done by structure.

Programs which bind dynamically to existing persistent data may employ two possible
methods of operation. In the first, the program defines a type equivalent to that of the data in
the persistent store that it wishes to use and the compiler assumes that this assertion is correct.
A type check is made as the data is accessed at run-time to validate this assertion. This allows
for very late binding of program and data. The second method uses a software tool to browse
the persistent store and pick up the type from the data in the persistent store. This will then be
included in the program automatically and the system proceeds as above. The advantage of the
second method is that the type need not be written down, which may be a considerable saving
where complex types are used. Another advantage of the second method is the speed of the
equivalence check, since equality can most often be established by identity. This is not name
equivalence, since non-equivalence must still be checked by structure, but it achieves the same
efficiency in normal use.

Partial specification of the type schema is less easy in structural equivalence systems than name
equivalence schemes since the whole structure of the type must be written down. Again this
can be overcome by the second method of operation but there are some other solutions. Type
dynamic of Amber [Car85] and types env and any in Napier88 are infinite union types with
dynamic injection and projection operations. The type structure of any part of the schema need
only be specified up to the limit of these infinite unions, which is convenient for partial
specification of the type schema.

We will now consider the same operations of the type schema that we considered earlier for
name equivalence.

Adding a type definition to the type schema causes no problems. Duplicate representations of
types may occur but, as described later, this will only affect performance.

Removing a type definition from the schema is not possible explicitly. Since the schema is
effectively distributed then the type may only be removed by garbage collection after all objects
bound to that description of the type have disappeared.

Altering a type definition can be accommodated but only through the compiler changing both
data and program simultaneously. However, the change is local and does not affect every value
of a particular type, only the instances bound to that description of the type. Another method
such as an IPSE is required to apply the change to the entire system. Most persistent systems
already rely upon a mechanism such as reflection for this, which can also provide genericity
[SFS90], browsing facilities [DB88,DCK89], data modelling facilities [CAA87], schema
editing and query facilities.

Merging type schema is not a problem with structural equivalence since the schema is already
distributed. Adding another part only adds to the distribution. No recompilation is required for
this.

The major drawback of structural equivalence is that it is sometimes slow. Checks on vastly
different types can be performed quickly. It is only where the types are complex and equal, or
nearly equal, that the check may be costly.

There are a number of optimisations that may be made. First of all the compiler can generate
code using the persistent identifier of a type identified by some browsing tool. The type
environments of Napier88 and Type::Type of Quest [Car88] give a basis for this. In this case
the structural check may be shortened to identifier equality without losing the desirable
semantics.

Secondly when the pointers to different representations are found to represent equivalent types
one of the pointers can be overwritten with the other. Subsequent checks on this pair of
pointers will be fast. This method can however be unstable depending on which pointer is
chosen for overwriting.

A third speed up is for an autonomous process to scan the persistent store combining pointers
for equivalent types. A table of preferred identities can be constructed and thrown away at any
time.

These efficiency measures speed up the check for equivalence to identity checks as in name
equivalence. However they do not speed up checks for non-equivalence or for equivalence
where identity is not assured. Indeed they slightly slow them down since the identity check is
performed first.

2 .3 A Universal Equivalence Checking Mechanism

Both structural and name equivalence type checking are myopic views of what is required for
checking in persistent object systems. Name equivalence schemes require the structure of the
data to be retained for code generation and checking in schema merging. Structural equivalence
schemes may often achieve the speed found in name equivalence. This is perhaps the holy
grail: to find a method of structural checking that is as fast as name checking while retaining its
flexibility.

3 Implementation of Structural Type Checking

3 .1 Type Equivalence Checking

In a structural equivalence type system, the types consist of sets defined over the value space of
a language. Membership of these is defined by some properties of the values themselves.
Values are usually of the same type only if they have the same set of operations defined over
them. Type equivalence is therefore an implicit property of a value, and values do not need to
be constructed with reference to a type definition. To decide type equivalence, a language
definition must include a set of type rules. These define the universe of discourse of the
langauge and allow the type of any value to be deduced.

The universe of discourse of a type system may be represented by the set of base types and the
set of type constructors. Type constructors allow the derivation of new types from other types
and perhaps some other information. Where the language is data type complete, the universe
of discourse is infinite, consisting of the closure of the recursive application of the type
constructors over the base types.

The structural type equivalence relation may be with a similar set of rules. For two types to be
equivalent, they must be created with the same type constructor and in an equivalent manner,
using types which are themselves equivalent. An equivalence rule must be defined for each
different type constructor.

To perform structural type equivalence checking, it is necessary to build representations of
types which contain sufficient information to establish the defined equivalence for each
constructed type. An equivalence function which traverses two instances of such
representations must also be defined. The essential feature of any representation type is that
there exists a well-defined mapping from the value space of the representations to the type
space of the language. It may be desirable in some systems for different values to represent the
same type, as long as the equivalence algorithm used implements an equivalence relation which
respects the semantics of structural type equivalence.

3 .2 Representing Types

Any type is either a base type or a constructed type. Constructed types are a composition of
other types, along with some information specific to the particular construction. This
information could consist of, for example, field names in a record type or the ordering of
parameters for a procedure type. In general, therefore, a type representation consists of three
parts:

• a label, to determine which base type or constructor it represents

• the information specific to the construction of this type, if any

• a set of references to other type representations

The equivalence algorithm for a representation must check that, for any two representations,
that the labels are the same, the specific information is compatible, and that the other types
referred to are recursively equivalent.

For some type systems there is a requirement that the chain of references may be circular. This
is the case in a type system with recursion, where circular references are used to achieve a finite
representation. For example, the type of an integer list may be

rec type IntList is structure(head : int ; tail : IntList)

Also, to represent a type system which includes values of either universally or existentially
quantified types, it is essential for any quantifier type to contain a reference to the type to which
it is bound, to allow either inference or explicit specialisation to deduce the correct type
equivalence rules of values with these types.

These circular references, although not increasing the conceptual complexity of type
representations, are the source of serious problems with the efficient implementation of a
structural equivalence algorithm.

3 .3 Efficient Structural Checking

Types may be represented in a relatively straightforward manner, and a suitable equivalence
algorithm is not hard to specify. There is a full discussion of this in [Con88]. However, there
are two factors which can cause serious problems with the efficient implementation of
structural checking.

A trend in modern programming languages, and particularly database programming languages,
is to provide more and more sophisticated type systems which allow more program errors to be
detected statically. This is currently pushing knowledge of static type checking to its limits,
and there are even systems which need to employ theorem provers within the type checking
system. Programmers are encouraged to provide the most detailed type specification possible,
as this increases the chance of a programming error being detected before execution. As a
consequence of this, type specifications may become extremely large and complex. It may be
imagined that the size of a database schema specified statically as a type is considerable. In a

system which performs structural equivalence checking dynamically, it must be possible to
check types of this complexity without incurring an unacceptable overhead.

The problem of large representations is compounded by the fact that they may contain cycles.
In general, an algorithm which traverses a potentially cyclic structure must check at each stage
that its area of current interest has not been previously traversed. If this check is not made,
then the algorithm cannot be guaranteed to terminate.

The check for cycles must be made on an attribute which is unique to each component of the
representation, rather than to the type constructor it represents. This may be, for example, the
identity of a node in a graph representation or the starting position within a string
representation. The difficulty here is that there is only a small amount of information specific
to a particular constructor, most of the important information of the type representation being
resident in its topology. It may not be possible to define a useful ordering over the node
instances for the purpose of a fast lookup. This depends on the chosen representation and the
implementation language. If there is no good ordering, the major cost of the equivalence
algorithm becomes a check for equivalent cycles, and its complexity is O (n2) where n is the
number of nodes. This is because during the traversal of the graph, itself of O (n), the cost of
checking whether a node has been previously visited is itself O (n).

The performance of algorithms to check equivalence is crucial in a persistent system, as
checking may frequently be required during the execution of a program. Complexity of an
algorithm is perhaps more important than performance within a conventional system, as it is
likely that a persistent system would have custom-built support for an appropriate algorithm.
After some more general discussion of efficiency considerations, two different methods which
achieve this are described.

3 .4 Normalisation

It may be seen that there is a major tradeoff between the cost of constructing type
representations and the cost of executing the equivalence algorithm. For example, strings
which consist of definitions within a language's type algebra contain sufficient information to
perform equivalence checking, but the checking algorithm is complex. As the construction of
representations is a task performed during the static checking of the program, and equivalence
checking is performed during execution, it is clearly desirable to put as much of the burden as
possible into the building of the representations.

For example, consider a type system which includes a structure type which is a labelled cross
product. Two such type constructions are considered equivalent if they are constructed over
equivalent types using the same labels, but the order of the labels is not significant. Therefore,

structure(a : int ; b : bool)

and

structure(b : bool ; a : int)

are equivalent. In general, as the ordering of the fields is unimportant, representations may be
constructed with the fields in any order. In this case, the equivalence algorithm must allow for
this during its execution. The fields may however be rearranged by placing them in
alphabetical order according to the labels. If this is the case, the equivalence algorithm may
then assume that the ordering of the fields is significant. Thus the task of equivalence checking
may be simplified at the cost of complicating the task of representation building.

 In general, it is possible for many differently "shaped" representations to be constructed for
equivalent types. For example, consider the equivalent types:

structure(a,b : structure(c : int))

and

structure(a : structure(c : int) ; b : structure(c : int))

If the algorithm which constructs type representations is written naïvely, then the first of these
definitions may result in what is, in some sense, a minimal representation of this type, whereas
the second may contain duplicate components. For representations which contain cycles an
infinite number of possible representations exist for any one type, although again there is only
a single minimal representation.

A normal form is one in which no two component representations are equivalent to each other.
The construction of a normalised representation may be highly expensive computationally, as it
involves checking every component representation against every other one. This involves the
execution of n2 embedded equivalence checks, where n is the number of nodes. Balanced
against this, for some classes of representation the equivalence algorithm for normalised
representations may be substantially faster. This will be discussed in more detail later.

3 .5 Representing types by graphs

In an implementation language which has a constructor type such as a record or structure, a
graph representation of types is straightforward and elegant. It is highly suitable because of the
recursive nature of type definitions and the requirement to have circular references between
constructor nodes. This makes such representations simple to build and to decompose, and as
such they are ideally suited for static type checking purposes. In one implementation of the
Napier88 system the following representation type is used:

rec type TYPE is
structure(label : int ; specificInfo : string ; references : list[TYPE])

This is sufficient to uniquely represent any type describable by the Napier88 type system using
some straightforward mapping rules. The label field distinguishes the base type or constructor
each node represents. The specificInfo field contains information such as fieldnames,
concatenated together with markers to form a single string. The references field represents all
references to other types from this type constructor. This has an implicit ordering which may
be used as part of the type information where required.

Type equivalence is a recursively defined algorithm over this structure, and must check only
for equality of the label and specificInfo fields, before recursively checking any representation
in the references field. The following algorithm would work for type systems where cycles are
not required:

rec let eqType = proc(a,b : TYPE -> bool)
a = b or !** this means pointer equality (identity)
(

a(label) = b(label) and
a(specificInfo) = b(specificInfo) and
eqList(a(references) , b(references))

)

& eqList = proc(a,b : list[TYPE] -> bool)
(a is tip and b is tip) or
(

a isnt tip and b isnt tip and
eqType(head(a),head(b)) and eqList(tail(a),tail(b))

)

As described previously, it may often be the case that the types being checked have the same
identity. In this case the equivalence is detected immediately, otherwise the full structural
check is necessary. Notice that the test for identity is also performed recursively, which
optimises the case of two different representations sharing components.

When the possibility of cyclic structures is introduced, it is necessary to take further steps to
ensure the termination of the algorithm for equivalent types. This is done by keeping a note of
all pairs of nodes that are traversed in a "loop table". Before any pair of nodes is traversed, a
check is made to see whether the same pair has already been encountered. If they have, then
either the full recursive check over these nodes has already been performed, or else is in the
process of being performed. If the check has already been performed, then the nodes must be
equivalent, otherwise the algorithm would have already been terminated with failure. In the
case where the test is still in the process of being performed, these nodes may safely be
assumed to be equivalent. If they turn out to be equivalent then the assumption is correct and
re-traversal of the loop has been avoided. If they turn out to be non-equivalent then the
algorithm will in any case end with failure from another branch of the recursion.

The new algorithm looks like this:

rec let eqType = proc(a,b : TYPE -> bool)
a = b or
in_loop_table(a,b) or
begin

add_to_loop_table(a,b)
a(label) = b(label) and
. . .

The use of the loop table not only ensures termination in the case of a cycle in the graph, but
also prevents multiple traversals of a shared component within the graph. This adds to the
efficiency of the algorithm.

With this representation, recording and looking up pairs of nodes in the loop table may cause a
performance problem, as no suitable key is readily available to use for indexing. This would
result in long lists of pairs being searched for an identity match. This can be simply solved by
introducing an extra field into the node structures. When each type representation is created,
this field is initialised with a value which may be used as a key for the node. Each pair of
nodes, as encountered, is now tabulated using one of these keys on the first traversal, and the
cost of checking for cycles is no longer significant. Another possibility is to use a pseudo-
random number instead of a unique key, and to use a hashing algorithm based on this.

The reason for using pseudo-random keys is that the hash table may be preserved between
executions of the equivalence function, and will then act as a memo table for all pointer pairs
which are compared more than once. The pseudo-random keys reduce the possibility of hash
clusters forming.

This persistent hash table has the interesting feature that it is not required to preserve the
correctness of the algorithm, and so may be re-initialised at any time. It is important also to
note that should the equivalence algorithm fail, all nodes added during that execution must be
removed. For this reason, a "shadow-copied" table is used, which may be either preserved or
restored depending on the outcome of the equivalence test.

The use of these techniques allows the check for cycles to be performed in constant time, and
so the checking algorithm may achieve complexity of O (n) where n is the number of nodes.

3 .6 Representing Types by Strings

There are many possible ways of representing types by strings. One possibility is to use
strings which consist of type definitions within the type algebra of the programming language,
which would normally be sufficiently powerful to provide a representation for any describable
type in the language's universe of discourse. However, for a sophisticated type system, any
equivalence algorithm over such representations would be inefficient.

A normalised string representation is more useful. An ideal transformation from types to
strings would be canonical, so that there is a reversible mapping from strings to types. In this
case, the type equivalence relation may be modelled by string equality. This may be
implemented in a computer by a block comparison, an extremely fast operation on most
machines.

A constructive proof that a canonical string form exists for a particular type system, although
not necessarily difficult, is beyond the aims of this paper. A method of construction will
instead be outlined.

The method relies upon the assumption that the graph representation and equivalence algorithm
outlined above are sufficient to model type equivalence in the system in question. Firstly an
algorithm will be described which produces a normal form of any such graph. Normal graphs
are canonical representations of types. Another algorithm will then be described, which maps
graphs to strings. This mapping is demonstrably reversible, and therefore gives the desired
result of canonical strings.

3 . 6 . 1 Normalising Graphs
The condition for a graph to be normal is that no two nodes of the graph represent equivalent
types. Therefore the type equivalence algorithm may be applied to any two nodes within such
a graph, and will always fail unless the nodes have the same identity. The algorithm we will
describe to map a graph to its normal form operates by copying the graph, but mapping any
equivalent nodes in the original graph to a single new node.

This algorithm relies upon a data structure similar to the loop table of the previous algorithm.
In this context we will describe it as a "memo table". Each node traversed is placed in the table
as before, but this time it is used to memoise the result which has already been, or is currently
being, calculated for the normal form which represents the node. The algorithm to produce the
normal form of a node checks in this table to see whether it has previously produced, or is in
the process of producing, a normal representation for an equivalent node. The check is thus
based upon the equivalence algorithm previously described, rather than simple identity.

The algorithm is as follows:

1. Construct a new memo table

2. To copy a node, first check in the memo table to see if a node with an
equivalent type has already been copied. If it has, return the
corresponding node stored with it. Otherwise,

3. Create a new node, without filling in the fields.

4. Add to the memo table a pair consisting of the node being copied and the
new "dummy" node.

5. Fill in the fields appropriately, including recursive use of this algorithm to
fill in the component types.

Notice the way that each new node must be created as a "dummy" so that each pair of identities
may be added to the memo table before any recursive calls are made. Notice also that because
the test applied to the memo table is equivalence, rather than identity, any nodes in the original
graph which are equivalent will be mapped to the copy of the first of these nodes which is
traversed during the copy algorithm. The resultant graph is therefore normal. For any type
system which may be correctly represented using this graph representation, there exists only a
single normal form which represents each type. Therefore there exists a reversible mapping
between normal representations and types, and so this representation is canonical. This is
achieved at the cost of executing the equivalence algorithm over every pair of nodes within the
original graph.

3 . 6 . 2 Mapping to Strings
The following algorithm maps graphs to strings. It again uses a memo table, this time to
provide unique names for any types which occur more than once in the representation. Again,
this deals both with cycles and with shared components in the graph representation.

startSymbol, endSymbol, and separatorSymbol are mutually distinct characters
which do not occur within the strings found in graph nodes.

1. Construct a new memo table

2. Initialise nextMarker, a procedure which produces a deterministic series of
unique strings, a different string being produced on each call. These
strings consist of characters which do not occur within the strings found
in graph nodes, and do not contain the characters startSymbol ,
endSymbol, and separatorSymbol

3. First check in the memo table to see if the node with this identity has
already been traversed. If it has, return the corresponding string stored
with it. Otherwise:

4. Store the node in the memo table, associated with the result of calling
nextMarker.

5. The result string is the concatenation of:

• startSymbol

• The node's label field in string format

• The node's names field

• The concatenation of the recursive application from Step 3 of this
algorithm to any component types

• endSymbol

The reader should be convinced that the above algorithm both terminates and produces a unique
form for any graph. The unique markers used within the string for loops in the graph depend
upon the traversal order of the graph; as the component types within any node are ordered as
part of the normalisation process this order is always significant type information. The nth

marker produced by the nextMarker symbol corresponds to the nth startSymbol which occurs
within the string, and so these markers act as explicit references within the string. The string
produced may thus be regarded as a normalised set of mutually recursive type definitions.

As these string forms are canonical, the type equivalence relation is implemented by string
equality. The important result is that a flattened form may be found, which is implemented by
a block comparison. This operation is already optimised in much conventional hardware, and
so such a representation may be highly suitable for a prototype persistent system.

3 .7 Comparison of Graphs and Strings

3 . 7 . 1 Speed
As has been shown, linear complexity can be achieved for equivalence algorithms over both
graphs and strings. This would imply that either representation is reasonable to build into a
persistent system, as no dramatic slowdown would be associated with a programmer using
more complex types in a program.

However, although the complexity may be the same, the hidden constant may be significantly
different. The block comparison associated with strings would be faster than the graph
traversal, even if both systems were constructed in hardware. In particular, conventional
hardware is already optimised to perform block comparisons, and so the string representation
should be substantially faster on an existing machine.

3 . 7 . 2 Space
Due to its recursive nature, the graph equivalence algorithm uses more space during execution
than string equivalence. This temporary space however is not expected to be a significant cost
in a persistent system, especially compared with the permanent space required for the type
representations.

The overall space occupied by a single representation is significantly greater for graphs than
strings. This is because each node in a graph carries the overhead associated with a persistent
object, whereas a string may be implemented as a single object. Also, references to other
nodes are persistent identifiers, which may be large depending upon the implementation of the
persistent store. As the amount of information contained within any single node is relatively
small, these overheads will be the major space cost of a graph representation.

The strings however require contiguous space, whilst the graphs do not. There are advantages
on both sides of this. For large types, comparing strings may cause a large amount of volatile
memory to be used up at one time, whereas the graph nodes may be fetched from non-volatile
store in pairs if necessary to use only a small amount of space. On the other hand, fetching the
graph requires a large number of object faults, whereas only one is required for a string. The
importance of these considerations depends upon the implementation of the persistent store.

As already stated however dynamic checking may be worthy of customised implementation,
and it would be expected that both string and graph type representations would be adjusted to
have similar characteristics using clustering, compression and fragmentation techniques as
appropriate.

3 . 7 . 3 Sharing
So that the block comparison may be made over strings, all of the references to other types are
converted so that they may be interpreted only within the context of the string. This means,
unlike the graph representation, that sharing of common component type representations is not
possible. This has serious implications for both time and space complexity.

For example, a program may require two values of related types from the store. This is
common in persistent programming, where one procedure may generate an object of a complex
type and others may use it in different ways:

type aType is

let generator = proc(-> aType) ; ...
let user1 = proc(aType -> int) ; ...
let user2 = proc(aType -> bool) ; ...

Using graph representations, the type representations of these three procedures may use the
representation already constructed for aType, and so only a few extra graph nodes are required
to represent the more complex types. Using strings, however, complete new strings must be
constructed for each procedure type, which duplicate all of the information already in the string
constructed for aType, as the context-sensitive references may be different. This is because
strings are a truly anonymous representation, whereas graphs contain implicit naming
information in their store addresses. The difference in space may be significant for programs
which use a complex type in many different ways.

Another aspect of sharing components is that any memoisation performed over these
components then carries over all types which use them. In the above example, it would be
common practice for one program to define the three procedures and place them within the
store and for another to subsequently access them. In this case, the memoisation performed by
the graph equivalence algorithm will mean that the structural equivalence check is only
performed once on the type aType, whereas the full structural check is required for each
different procedure if a string representation were used. Again, this is a substantial saving for
a large class of programs.

3 .8 Measurements

To give an idea of the expected performance of these algorithms, we include some
measurements taken from the Napier88 system. We have made measurements to indicate space
overhead, performance, and complexity of the different schemes.

All measurements were made with the type of a Napier88 abstract syntax tree. This is an
extended and revised version of PAIL [Dea87], and is a large, mutually recursive type,
consisting of around one hundred and forty definitions.

The measurements of performance are hard to quantify, as they are highly dependent upon the
implementation of the Napier88 system within which they were made. Suffice it to say that the
best figures we have achieved for checking independently prepared versions of this type are at
the rate of several per second for a graph representation, with a substantial speedup to several
hundred per second for a string representation.

The complexity measurements confirm the deduction that complexity at least as good as linear
may be achieved for checking graph representations, with a suitable size of hash table. It is a
reasonable assumption that a large enough table may be employed, as this is a fixed overhead
per system. As explained, the table may be re-initialised if it becomes too large. In the case
where the table may be large enough to contain all types used within the system, then the
resulting memoisation achieves the same efficiency as name equivalence checking.

3 . 8 . 1 Space
The graph representation of the Napier88 PAIL type consists of 413 objects, with an average
of just under nine words per object. The total size of this graph is 14,466 bytes. The string
form of the graph is 2,206 bytes long.

These figures are all taken from relatively naïve representations; we have made no serious
effort to compress the representations.

The benefits of space saving by sharing are hard to quantify, as they depend very much upon
the manner in which the types are used. However, in our use of the abstract syntax tree type in
building a Napier88 compiler, we found that the type is used in 276 different contexts. Each
context requires a different string for its representation, as previously explained, but a graph
may be shared by different contexts. Even if the system is fully optimised and only a single
representation is used for each type, the total amount of store used to represent this type by
strings is therefore more than 600,000 bytes, as oppose to a constant 14,466 bytes for the
graph representation. Furthermore, each of these 276 representations requires at least one full
structural check, whereas the first check using the graph representation acts as a memo for any
other check performed while the system is running.

4 Conclusions
Type systems in persistent programming languages are assuming an increasingly important
role, and the traditional database schema is now commonly regarded as a type. This leads to a
requirement for the efficient manipulation of types in a persistent system to allow provision of
the facilities traditionally found in DBMS for schema editing, use and evolution. We have
chosen one aspect of schema manipulation in this paper, that of type equivalence checking, and
have described the use of the common methods of name equivalence and structural
equivalence.

We have shown that while name equivalence schemes are easier to implement and are more
efficient they still have to use structural checks to provide important facilities such as schema
merging. On the other hand structural equivalence, generally more flexible and less efficient,
can often achieve the same performance as name equivalence.

Given that the efficiency of name equivalence is adequate for our needs, we have concentrated
on how to improve the performance of structural equivalence checking. We have described
how such checking is performed, and shown that there is a balance between constructing
efficient representations of types in terms of store and the speed of the equivalence algorithm in
comparing two representations.

We have shown how types may be represented by strings and by graphs, highlighting the
difficulties in their construction and use. Some preliminary measurements are presented and
our main conclusion is that where the type schema is large and involves the sharing of types,
the graph representation will be much more efficient in terms of space. It may however be
slower in terms of speed of checking depending on its use within the persistent store.

5 Acknowledgements
We would like to acknowledge funding from the following: SERC grant GRF 02953; Esprit II
Basic Research Action 3070 - FIDE; SERC Visiting Fellowship GRF 28571 which allowed
John Rosenberg to visit St Andrews for a year, and the UK DTI Object-Oriented Awareness
Initiative. We would also like to thank Mike Livesey of St Andrews University for his many
constructive criticisms.

6 References
[ACO85] Albano, A., Cardelli, L. & Orsini, R. "Galileo : A Strongly Typed Conceptual

Language". ACM TODS 10,2 (June 1985), pp 230-260.

[ACP89] Abadi, M., Cardelli, L., Pierce, B.C. & Plotkin, G. "Dynamic Typing in a
Statically Typed Language". DEC SRC Report 47, (June 1989).

[ADG89] Albano, A., Dearle, A., Ghelli, G., Marlin, C., Morrison, R., Orsini, R &
Stemple, D. "A Framework for Comparing Type Systems for Database
Programming Languages". Proc 2nd International Workshop on Database
Programming Languages, Oregon (June 1989), pp. 203-212.

[AGO89] Albano, A., Ghelli, G. & Orsini, R. "Types for Databases: The Galileo
Experience". Proc. 2nd International Workshop on Database Programming
Languages, Oregon, (June 1989), pp 196-206.

[AM85] Atkinson, M.P. & Morrison, R. "Types, bindings and parameters in a
persistent environment". Proc. 1st Appin Workshop on Data Types and
Persistence, Universities of Glasgow and St Andrews, PPRR-16, (August
1985),1-25. In Data Types and Persistence (Eds Atkinson, Buneman &
Morrison) Springer-Verlag. (1988), 3-20.

[Atk89] Atkinson, M.P. e-mail barrage on O-O classes and deletion. (1989-90).

[BBB88] Bancilhon F., Barbedette G., Benzaken V., Delobel C., Gamerman S., Lecluse
C., Pfeffer P., Richard P. & Valez F. "The Design and Implementation of O2,
an Object Oriented Database System". Proc. 2nd International Workshop on
Object-Oriented Database Systems, West Germany. In Lecture Notes in
Computer Science 334. Springer-Verlag (1988), pp. 1-22.

[CAA87] Cooper, R.L., Atkinson, M.P., Adberrahmane, D. & Dearle, A. "Constructing
Database Systems in a Persistent Environment". 13th VLDB, Brighton, UK,
(September 1987), pp 117-126.

[Car84] Cardelli L. "A Semantics of Multiple Inheritance", In Semantics of Data Types,
Lecture Notes in Computer Science 173. Springer-Verlag (1984) pp 51-
67.

[Car85] Cardelli, L. Amber. Tech. Report AT7T. Bell Labs. Murray Hill, U.S.A.
(1985).

[Car88] Cardelli, L. "Typeful Programming". 1st European Conference on Extending
Database Technology. In Lecture Notes in Computer Science 303.
Springer-Verlag (1988).

[CDM90] Connor, R.C.H., Dearle, A., Morrison, R. & Brown, A.L. "Existentially
Quantified Types as a Database Viewing Mechanism". Advances in Database
Technology - EDBT90, Venice. In Lecture Notes in Computer Science
416. Springer-Verlag (1990), pp. 301-315.

[Con88] Connor, R.C.H. "The Napier Type Checking Module". Universities of St
Andrews and Glasgow. PPRR-58-88 (1988).

[CW85] Cardelli, L. & Wegner, P. "On Understanding Types, Data Abstraction and
Polymorphism". ACM Computing Surveys 17,4 (December 1985), pp 471-
523.

[Dea87] Dearle, A. "A Persistent Architecture Intermediate Language". PPRR-37-87,
University of St. Andrews. (1987).

[DB88] Dearle A. & Brown A.L. "Safe Browsing in a Strongly Typed Persistent
Environment". The Computer Journal 31,6, (December 1988), pp. 540-545.

[DCK89] Dearle, A., Cutts, Q.I. & Kirby, G. "Browsing, Grazing and Nibbling
Persistent Data Structures". 3rd International Conference on Persistent Object
Systems, Newcastle, Australia (1989), pp 96-112.

[Ich83] Ichbiah et al., The Programming Language Ada Reference Manual. ANSI/MIL-
STD-1815A-1983. (1983).

[MBC88] Morrison, R., Brown, A.L., Connor, R.C.H. & Dearle, A. "Napier88
Reference Manual". Persistent Programming Research Report PPRR-77-89,
University of St Andrews. (1989).

[MP85] Mitchell J.C. & Plotkin G.D. "Abstract Types have Existential type". ACM
TOPLAS 10,3 (July 1988), pp 470-502.

[Rec90] type AnyArray[t] is variant(simple : t ; complex : AnyArray[array[t]])

[SFS90] Stemple, D., Fegaras, L., Sheard, T. & Socorro, A. "Exceeding the Limits of
Polymorphism in Database Programming Languages". Advances in Database
Technology - EDBT90, Venice. In Lecture Notes in Computer Science
416. Springer-Verlag (1990), pp. 269-285.

[SS89] Sheard, T. & Stemple, D. "Automatic Verification of Database Transaction
Safety". ACM Transactions on Database Systems 12, 3 (September, 1989), pp.
322-368.

[SWB89] Schmidt, J.W., Wetzel, I., Borgida, A. & Mylopoulos, J. "Database
Programming by Formal Refinement of Conceptual Design". IEEE - Data
Engineering, (September 1989).

[SZ86] Skarra A. & Zdonik S.B. "An Object Server for an Object-Oriented Database
System", Proc. International Workshop on Object-Oriented Database Systems,
Pacific Grove California (September 1986) pp 196-204.

