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Abstract. This paper highlights a psychological phenomenon affecting the accuracy of mental 
models. It occurs when two consecutive events happen as expected by an operator. Typically, 
such a situation reinforces the confidence in one’s mental model. However, consecutive events 
can happen as a random co-occurrence, for reasons that actually differ from the ones believed by 
the operator. Nonetheless, because of the consistency between the environmental data and the 
operator’s expectations, one event can be taken to be the cause of the other. When this false 
belief happens, the mental model is erroneously assumed to be valid. We discuss this 
phenomenon and its potential disastrous consequences using the example of a real commercial 
air crash. We finally address some implications for systems’ design and support tools. 
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1. INTRODUCTION 
During a presentation, one of the authors’ colleagues using his laptop for displaying slides got 
interrupted when his computer’s screen went blank. He hit the track pad of his laptop in case the 
latter had gone into sleep mode but the video signal did not come back. As he was using an 
adapter for the VGA display cable, he suspected the connection had come loose. After some 
seconds during which he tightened more firmly the adapter and the display cable together, the 
video came back on. The problem was solved and, hopefully, the adapter would now behave 
normally. Some minutes later, the same scenario happened again and our colleague performed 
the same actions as before. He hit the track pad but this triggered no signal. He then modified 
the position of the display adapter so that the weight of the cable would not pull on it. A couple 
of seconds later, the video was back on again. The third time the scenario happened, it became 
obvious, at least to everyone except the person using the laptop, that the manipulation of the 
display adapter and the video coming back on was pure coincidence. We discovered that the 
machine was going into sleep mode and needed about 6 to 8 seconds to exit it. It is likely that 
any action carried out just before the video signal came back would be considered as the 
solution. 
 
Through this simple -yet real- example, we wish to highlight an interesting cognitive feature that 
is common across domains. Humans tend to consider that their vision of the world is correct 
whenever events happen in accordance with their expectations. However, two sequential events 
can happen as expected without their cause being captured. When this is the case, humans tend 
to treat the available evidence as exhaustively reflecting the world, erroneously believing that they 
have understood the problem at hand. These co-occurring events can seriously disrupt situation 
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awareness when humans are using mental models that are highly discrepant to reality but 
nonetheless trusted.  
 
In the next section, we consider how the mechanisms leading to the aforementioned error can be 
explained using the concept of mental models. We then assess the role of this error in dynamic, 
critical applications using the example of a commercial air crash (section  3). We finally discuss 
some ways for improving the design of critical systems to avoid such problems (section  4). 

2. MENTAL MODELS 
Limitations in memory and processing capabilities mean that humans cannot handle the totality 
of the information displayed in their environment. Instead, they build representations that are 
meant to support behaviour (Rabardel, 1995). These mental models can take various forms (see 
Moray, 1996 for a taxonomy of the different types). Since we are describing cognitive activities in 
situ, we take mental models to be scarce, goal-driven images of the world that are built to 
understand the current and future states of a situation. 
What characterises best mental models is their incompleteness. Their content is only a partial 
representation of the environment and their scope is limited (Sanderson, 1990; Sanderson & 
Murtagh, 1990). They are essentially built from a) the knowledge needed for pursuing a given 
goal and b) some data extracted from the environment. The resulting image of the world is one 
in which the essential features of a problem are overemphasized whereas the peripheral data can 
be overlooked (Ochanine, 1978). In this respect, mental models are described as homomorphic 
representations of the world (Moray, 1987). They are simplified, cognitively acceptable versions 
of a too complex reality. In dynamic processes, it may be the case that mental models are correct 
at early stages of the interaction. Over time, with the evolution of this interaction and possible 
degradation of the situation (due to an emergency, for instance), the model gets simplified and 
becomes more based on correlation between system elements, such that only the best predictors 
of the system’s states are taken into account (Baxter & Ritter, 1999). 
Although building and maintaining mental models are core activities in the control of dynamic 
complex systems, human operators also have to perform several other critical tasks that affect 
system performance. They have to plan actions, control movements, exchange information with 
collaborators and so on. This complex combination of tasks has to be executed with a limited 
amount of cognitive resources. For this reason, operators tend to save resources whenever it is 
possible using mechanisms such as selective memory and heuristic, shortcut-based reasoning 
(Rasmussen, 1986). In the case of mental models, saving resources causes them to be built on the 
basis of partial pieces of evidence. However, this has to be seen as the consequence of cognitive 
limitations where problems are solved according to an intuitive cost-benefit trade-off. Since 
Simon’s (1957) concept of bounded rationality, it is accepted that cheap adequate solutions are 
often preferred to costly perfect ones. In other words, people tend to satisfice rather than 
optimise, settling on a solution that is deemed good enough even though it may be sub-optimal. 
 
The consequences of flawed mental models can be disastrous when operators are interacting 
with dynamic critical systems, e.g. commercial airplanes. Operators of these systems (i.e. pilots) 
are sometimes faced with unexpected problems which they have to diagnose and resolve. This 
local troubleshooting activity, which is inserted in the more global objective of piloting the 
aircraft, involves the construction of an explanation in real-time. Factors such as limited 
cognitive resources, confirmation bias (Klayman & Ha, 1989) and time pressure can mean that 
pilots construct an erroneous explanation of such incidents. Flaws in mental models are detected 
when the interaction with the world reveals unexpected events. However, these inaccurate 
mental models do not always lead to accidents. Very often, they are recovered from. In this 
respect, error detection and compensation are significant features in human information 
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processing. The weakness of mental models lies in their poor requirements in terms of validity: If 
the environmental stream of data is consistent with the operator’s expectations, that is enough 
for the operator to continue regarding the mental model as valid. The understanding of the 
mechanisms generating the data is not a necessary condition. 
 
We are not concerned here with how operators could build exhaustive mental models, as their 
incompleteness reflects a strong need for information selection. Rather, the issue of interest is to 
understand the conditions in which operators believe they have a good picture of the situation 
whereas the underlying causal mechanisms have not been captured. One of these conditions is 
the co-occurrence of events. The types of problem that can arise from this phenomenon are 
illustrated in the next section.  

3. THE KEGWORTH ACCIDENT 
The Kegworth air crash (Air Accidents Investigation Branch, 1989) was chosen to illustrate the 
problems that can be caused by co-occurring events, for two reasons. First, it is a well-known 
accident, allowing us to ground our discussions in a case that is now well-understood. Second 
and most importantly, this crash offers a very good -although tragic- instance of the mechanism 
we wish to discuss in this paper. Although the Kegworth accident report was issued several years 
ago, the co-occurrence angle has not been studied to date. For these two reasons, we believe 
further progress can be made in understanding the psychological mechanisms that were causally 
involved in the crash. There is also some value in achieving this understanding since this 
mechanism is believed to be domain independent. Therefore, the Kegworth accident may 
provide data from which we can gain useful knowledge that can be generalised to human-
machine interaction in the large. 
 
On the 8th of January 1989, a British Midland Airways Boeing 737-400 aircraft crashed into the 
embankment of the M1 motorway near Kegworth (Leicestershire, UK), resulting in the loss of 
47 lives. The crash resulted from the flight crew’s management of a mechanical incident in the 
left (#1) engine. A fan blade detached from the engine, resulting in vibration (severe enough to 
be felt by the crew) and the production of smoke and fumes that were drawn into the aircraft 
through the air conditioning system. The flight crew mistakenly identified the faulty engine as the 
right (#2) engine. The cockpit voice recorder showed that there was some hesitation in making 
the identification. When the captain asked which engine was faulty, the first officer replied ‘It’s 
the le… it’s the right one’, at which point the right engine was throttled back and eventually shut 
down. This action coincided with a drop in vibration and the cessation of smoke and fumes 
from the left (faulty) engine. On the basis on these symptoms, the flight crew deduced that the 
correct decision had been taken, and sought to make an emergency landing at East Midlands 
airport. The left engine continued to show an abnormal level of vibration for some minutes, 
although this seems to have passed unnoticed by the pilots. Soon afterwards, the crew reduced 
power to this engine to begin descent, whereupon the vibration in the engine dropped to a point 
a little above normal. Approximately ten minutes later, power to the left engine was increased to 
maintain altitude during the final stages of descent. This resulted in greatly increased vibration, 
the loss of power in that engine and the generation of an associated fire warning. The crew 
attempted at this point to restart the right engine but this was not achieved in the time before 
impact, which occurred 0.5 nautical miles from the runway. 
 
In addition to the crew’s mistakes, several other factors contributed to the accident. When later 
interviewed, both pilots indicated that neither of them remembered seeing any indications of 
high vibration on the Engine Instrument System (EIS; see Figure 1). The captain stated that he 
rarely scanned the vibration gauges because, in his experience, he had found them to be 
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unreliable in other aircraft. It is also worth noting that the aircraft was using a new EIS which 
used digital displays rather than mechanical pointers. In a survey carried out in June 1989 
(summarised in the accident report), 64% of British Midland Airways pilots indicated that the 
new EIS was not effective in drawing their attention to rapid changes in engine parameters and 
74% preferred the old EIS. The secondary EIS, on which the vibration indicator was located 
followed standard design practice and hence did not include any audio or additional visual 
warning to indicate excessive readings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Boeing 737-400 cockpit. The EIS is located in the centre (© Pedro Becken. All rights reserved). 
The secondary EIS is magnified on the right-hand side of the picture. The vibration indicators are circled in white 

(photo from Air Accident Investigation Branch accident report). 
 
As another contributing factor, the crew workload increased out of control. Some time after the 
#2 (working) engine had been erroneously shut down, the captain tried without success to stay 
in phase with the evolution of the incident. He was heard on the cockpit voice recorder saying: 
‘Now what indications did we actually get (it) just rapid vibrations in the aeroplane – smoke…’. At this point, 
the crew were interrupted with a radio communication from air traffic control. Later, the flight 
service manager entered the flight deck and reported that the passengers were very panicky. This 
further distracted the flight crew and the captain had to broadcast a message of reassurance to 
the passengers. Both the captain and first officer were also required to make further radio 
communications and perform other duties in preparation for the landing. All of these actions 
affected the degree of control of the emergency. 
Finally, it is worth noting that while both the captain and the first officer were experienced (over 
13,000 hours and over 3,200 hours flying time respectively), they had only 76 hours experience in 
the Boeing 737-400 series between them. 

4. DISCUSSION 
In this section, we briefly address some general issues about mental models in complex dynamic 
systems (for a definition of these systems, see Brehmer, 1996 or Cellier, Eyrolle & Mariné, 1997). 
Based on our analysis of the Kegworth accident data, we then make some general suggestions for 
improving the dependability of systems that are deployed in complex dynamic domains. We 
conclude the discussion by outlining some limits that need to be made explicit when studying 
human error. 

 

EIS 
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There are some similarities between the particular flaws in mental models that we have identified 
using the Kegworth accident data, and some existing types of human error. Nevertheless, our 
approach can be distinguished from mode confusion (Crow, Javaux & Rushby, 2000; Leveson et 
al., 1997; Rushby 2001; Rushby, Crow & Palmer, 1999) in that the automation behaves as 
expected in our case. It can also be distinguished from fixation errors (De Keyser & Woods, 
1990) in that we are concerned with the processes involved in the construction of mental models 
rather than their persistence.  

4.1. Mental models in a dynamic world 
Attempting to save cognitive resources causes mental models to be biased in such a way that 
partial confirmation is easily accepted. Instead of looking for contradictory evidence, people tend 
to wait for consistent data. This phenomenon, called confirmation bias (Klayman & Ha, 1989), 
has already been studied in human-machine interaction (e.g. Yoon & Hammer, 1988). The 
corollary of confirmation bias is that people overlook contradictory data. This is one explanation 
for the reinforcement of flawed mental models. In the case of the Kegworth accident, an 
erroneous decision coincided with a reduction in the level of the symptoms which lasted for 
some twenty minutes. When it is compatible with the operator’s expectations, this type of co-
occurrence probably works against rejection of the existing mental model. It also makes it harder 
to integrate any contradictory evidence that may subsequently become available. 
Operators are more likely to reject any information that is not consistent with their expectations, 
rather than update their mental model. The latter has a cost that operators cannot always afford 
in time-critical situations. In the end, data can be abusively reinterpreted to fit the model that 
operators have of a situation (Moray, 1987). This confirmation bias is probably the outcome of 
an economy-driven reasoning: following a line of least effort (Rasmussen, 1986), operators can 
treat random data as meaningful if it matches their vision of the world. 
 
Operators can erroneously maintain as valid, representations that have already departed from a 
reasonable picture of the reality. In dynamic situations, one reason is that operators try to avoid 
the cost of revising their mental model as long as it allows them to stay more or less in control. 
In other words, they satisfice. Because mental models are constantly matched against the 
feedback from the process they control, they are fed with a constant stream of data. However, 
there exist situations where the feedback is discrepant from the operator’s expectations. When 
this discrepancy provokes such a loss of control that required tasks cannot be run anymore, 
some costly revision of the mental model as well as diagnostic actions are needed (Rasmussen, 
1993). This is a non-trivial task in dynamic situations such as piloting an aircraft in that some 
control is already lost and the crew is required to run, coordinate and share two processes at the 
same time. One is a rule-based control of the flight parameters: the plane must continue to fly. 
The other process is information gathering and integration. The potential work overload caused 
by this dual activity may explain why outdated (flawed) mental models are maintained even after 
the detection of some mismatches. Provided they can keep the system within safe boundaries, 
operators in critical situations sometimes opt to lose some situation awareness rather than spend 
time gathering data at the cost of a total loss of control (Amalberti, 1996). 
Critical situations can be caused by the combination of an emergency followed by some loss of 
control. When this happens, there is little room for recovery. The Kegworth accident probably 
falls into this category. When the flight crew got around to thinking about checking the engine 
data, they were distracted by other more urgent tasks. The emergency nature of the situation and 
the emerging workload delayed the revision of the mental model which ultimately was not 
resumed. 



 International Journal of Human-Computer Studies, 60, 117-128. (2004). 

 6

4.2. Implications for the design of dependable systems 
The Kegworth crash highlights that the control of automation is a real dialogue between 
operators and machines. When this dialogue fails because information flow does not help 
situation awareness, events are likely to be processed in a sub-optimal manner. The following 
discussion will not focus explicitly on co-occurrences as they are a fine-grained mechanism as 
compared to the complexity and diversity of cognitive activities involved in the control of 
dynamic processes. Instead, we think a wider discussion is needed to assess more precisely the 
stakes of a more reliable interaction between operators and machines. We believe that human-
machine interaction could be improved in two complementary ways. 

4.2.1. Training operators 
Operators must be made more aware of human factors through training and education. Some 
psychological mechanisms can then become more obvious to the operators themselves and 
positively influence the perception that they have of their own performance. In aviation, for 
example, human factors have been an integrated part of pilot training for many years (e.g. Green 
et al., 1996). Nowadays, these training schemes include explicit consideration of cognitive 
psychology, decision making and human error. Within the cockpit, these contents contribute to 
better communication, more efficient distributed decision making and improved stress 
management. Looking at the broad picture, human factors must be regarded as one of the many 
elements that keep the commercial accident rate constant despite the increase in traffic. In the 
near future, it will be the case that more and more pilots, who will have been educated in human 
factors from the early stages, will contribute to an even higher degree to critical systems’ 
dependability.  

4.2.2. Embedded agents 
The automation must be designed to be aware of the operators by having some embedded 
knowledge of human reasoning as well as some screening functions (e.g. Boy, 1987; Rasmussen, 
1991). This would allow machines to anticipate operator’s decisions, provide more appropriate 
context-sensitive alarms and support for critical decisions. Expected benefits include the 
provision of some assistance in emergency situations before matters become too critical. 
Operators need more help in those situations for which they have not been trained, than on 
nominal settings. It implies that systems at large have to be designed in such a way that 
unexpected events can be recognised and appropriately handled by support tools. 
Wageman (1998) argues that interfaces can typically flood operators with extra data at a time of 
the process (e.g. emergencies) where few resources are still available. From our point of view, we 
think it is precisely because operators’ intentions are not captured by automated systems that 
over-information occurs. This issue has been developed by Hollnagel (1987) who proposed the 
concept of intelligent decision support systems, and further addressed by Filgueiras (1999). One way 
forward may be to design support tools that incorporate models of the system they are a part of. 
This would permit the automation to predict the future states it is going to enter given the inputs 
coming from the environment and the operator. Without this kind of assistance, operators will 
have to continue looking for data during critical phases of process control. 
The use of embedded agents to support decision making has already started in the aviation 
domain. The most notable example is probably Hazard Monitor (e.g. Bass et al., 1997). This 
system tracks user interactions and tries to match these against stored expectation networks of 
normative behaviour as a way of doing plan recognition. On the basis of what it detects, Hazard 
Monitor can then make suggestions about what the user should consider to do next. These 
suggestions are prioritised, and initially start as gentle reminders about something that needs to 
be done. The second level is a stronger reminder that it is getting more critical that a particular 
action be performed. Finally, as a last resort, Hazard Monitor can directly intervene to take the 
action. Even though Hazard Monitor is a sophisticated system, it still only deals with routine 
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interaction. In other words, it is largely restricted to dealing with plans that would be used in 
normal circumstances. In the particular case of co-occurring events, it would not be able to offer 
any assistance to avoid the potential problems. Nonetheless, Hazard Monitor is a concrete 
example of a decision support agent that highlights a tangible research stream in critical systems’ 
design (see Jennings & Wooldridge, 1998, for a more complete list of applications of intelligent 
agents).  
 
We believe that research in intelligent agents can enhance the reliability of human-machine 
systems by improving the human-machine interaction in general. Agents need a) to provide 
support to help operators make the right decisions and take the appropriate actions, and b) to act 
as barriers when they try to perform erroneous actions. However, we are aware of some 
limitations. For instance, the notion of correctness itself is difficult to capture since it is highly 
context-dependent. Moreover, some totally unexpected failures, such as the one causing the 
crash-landing of a DC-10 in Sioux-City (NTSB, 1990), can make agents useless, if not 
undesirable. It could also be argued that agents based on inductive methods of reconstructing 
pilots’ intentions can have flaws in data selection. Although the latter is a distinct possibility, 
these flaws may be caused by our current state of knowledge rather than by the principle of 
inferring mental models from interaction data. As suggested by Hollnagel and Woods (1999), 
more research is needed in cognitive ergonomics and embedded agents design. In the field of 
human-machine interaction, this would facilitate the integration of such mechanisms as 
construction, revision and decay of mental models. New research in neuroergonomics (e.g., 
Hancock & Szalma, 2003; Parasuraman, 2003) may help to provide more detailed information 
about how these processes occur. 

4.3. Supporting operators towards aviation safety 
Generally speaking, we see our recommendations as local measures belonging to a broader 
context where the operator still retains the overall responsibility as the final decision maker. But 
for operators’ decisions to be accurate in emergency situations, for example, a fast and clear 
understanding of the situation is needed. We feel that dedicating some computing power to 
information gathering, analysis and prediction will feed operators’ mental models with more 
useful data as well as supporting a better interaction between human agents and complex 
dynamic critical systems. This matters for critical operations such as aircraft piloting (see Dehais 
et al., 2003). The constant increase in commercial aviation traffic has not been followed by an 
increase in accident rate. Contributions to this rather positive state of facts are the steady 
technical improvement of modern aircrafts as well as the genuine cognitive flexibility of flight 
crews when handling exceptions (Besnard & Greathead, 2002). Nevertheless, as reported by 
Amalberti (1996), a flat accident rate has persisted since the 1970s. This is why we think more 
efforts have to be invested in the reliability of the dialogue between operators and automation. 
We think, following Amalberti, that the limit to modern aviation safety now lies in the extent to 
which we can improve cooperation in the dialogue between automated systems and operators. 
This assertion undoubtedly extends beyond aircraft piloting and hits any critical system where 
humans have to take decisions. 

4.4. Limits 
We wish to emphasise that mental models can also fail for several reasons other than co-
occurrence, such as complexity, lack of knowledge, and workload. We want to give co-
occurrences the attention they deserve. They can lead to catastrophes but only account for a 
small portion of the failures of mental models. 
Although we have focussed on the weaknesses of mental models, we also have to emphasise that 
human errors are not cognitive dysfunctions. Often, errors must be seen as marginal events 
caused by the same mechanisms that generate correct actions most of the time (Rasmussen, 
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1986). As a consequence, errors have to be considered in this paper as the side-effects of a 
cost/benefit driven reasoning process aimed at getting an optimal performance for the lowest 
mental cost (Amalberti, 1991; 1996). 

5. CONCLUSION 
Human performance is fallible. Paradoxically it remains one of the ironies of automation that 
operators are still required to intervene and fix the problem when the automation fails 
(Bainbridge, 1987). It is the inherent human traits of flexibility and adaptability that allow them 
to be able to do this. What we have started to argue here is that monitoring and control in 
human-machine systems needs to be considered more as a joint concept.  
Our level of understanding of the ways and situations in which human performance can go awry 
continues to improve. In particular, in this paper we have shown how co-occurring events can 
lead to problems. The next step is to capture the details of this phenomenon in such a manner 
that they can be incorporated into the design of systems, using embedded intelligent agents, for 
example, as a way of increasing the dependability of the overall system in the face of increasing 
complexity. 
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