
Social Analysis and
Dependable Systems Design

Prof. Ian Sommerville

School of Computer Science

St Andrews University

Scotland

St Andrews

 Small Scottish town, on
the north-east coast of
the UK

 Home of golf
 Scotland’s oldest

university (founded in
1413)

 Small university
focusing on research
and teaching excellence

Structure of talk

 Part 1: Background and rationale
 Why social factors are important in designing

dependable socio-technical systems

 Part 2: Integrating social analysis and software
engineering
 An example of one approach we have developed for

using social analysis in software engineering

Background

 Software dependability
 The DIRC project - dependability of socio-technical

systems
 Socio-technical systems

 Cooperation
 Awareness
 Workarounds

 Social analysis
 Ethnography

System dependability

 Availability
 Will the system deliver service when required?

 Reliability
 Will the system behave according to its specification?

 Safety
 Could the system damage its users or its environment?

 Integrity
 Will the system protect itself and its data from damage?

 Confidentiality
 Will the system maintain ensure that access to data and

resources is only permitted to authorised users?

Dependability research

 Body of research since the 1980s focusing on how to
measure and improve software dependability

 Improving software dependability
 Fault avoidance. Use methods and techniques during

system development that avoid introducing faults into
the software or that detect faults before the software
is deployed.

 Fault tolerance. Use run-time support for software that
detects system faults before these result in system
failure and initiates actions to recover from these
faults.

Dependability engineering

 Technical advances to improve software dependability have mostly been
applied in control systems or in systems where continuous availability is
required.

 These have been largely successful
 It is certainly possible to create software systems that exhibit very

high levels of availability (e.g. telephone switching software) and/or
very low failure rates (e.g. flight control systems)

 However, all of these depend on a very detailed software
specification with dependability defined with respect to that
specification

 The techniques also assume an approach to software engineering
where conventional programming languages are used for software
development

Dependability problems

 There remains a significant level of failure in the
broader socio-technical systems where software
systems are used (e.g. medical information systems)

 Some of the failures that occur are a consequence of
the software specification failing to recognise the
practical realities of the environment where the system
is used

 Dependability engineering is very expensive and is
only really justifiable in the most critical systems

The DIRC project

 Research project focusing on the dependability of
socio-technical systems rather than software.

 Socio-technical systems
 Hardware, software, processes, organisations, people
 Hospital information system, air traffic control system

 DIRC assumption
 Dependability should be defined w.r.t the socio-

technical system which includes the software NOT the
software specification

DIRC goals

 Derive methods and techniques to improve the overall
dependability of socio-technical systems
 Examine the broader socio-technical systems that use

software to help understand how these are affected by
software dependability/undependability

 Look at modern approaches to software development
to understand how dependability issues are considered

 Derive methods, techniques and tools to help improve
the fit between deployed software and the broader
socio-technical system

Socio-technical systems

 Computer-based systems are part of
broader socio-technical systems that
include the technical system,
processes, people and organisational
procedures
 Air traffic control
 Medical imaging

 Socio-technical systems are inherently
cooperative systems involving both
synchronous and asynchronous
cooperation

System dependability

 Dependability isn’t about conforming to a specification
but rather reflects the system’s ability to cope with
human failures, unusual and unexpected
circumstances and the changing requirements of
stakeholders

 Work practice evolves to deliver dependability
 Dependability is achieved through

 Cooperation
 Awareness
 Workarounds

Dependability foundations

 Redundancy
 Ensure that there is spare capacity in the system that

can be brought into use in the event of system failure
 Diversity

 Ensure that there are different ways in the system to
achieve the same goal

 Inherent tension between efficiency (use of resources)
and dependability
 Automation may lead to better utilisation of resources

but sometimes reduces the redundancy and diversity in
systems. It can reduce the overall dependability of
systems

Working practices

 Responsive and reactive
 People change their working practices in response to new

information and they react rapidly to unusual circumstances
 Inherently flexible

 If documented procedures and processes exist, they are
often interpreted in different ways by different people and
may be subverted in subtle but important ways

 Professional
 Most people adopt a professional attitude to their work and

design the work to take into account their professional skills
 Hard to articulate

 It is difficult for practitioners to articulate the essential
features of everyday tasks

Rule-based cooperation

 Some processes are explicitly cooperative and involve different
people working on the same artefacts at different times

 These are the types of process that may be automated using
workflow systems and specified using process models. There is a
defined sequence of operations required and a division of work
across these operations

 In some cases, process fragments can be enacted by automated
services

 Generally, rule-based approaches can only codify how to react to
a limited number of exceptions.

On-demand cooperation

 Knowledge-based processes may have elements of
pre-defined cooperation but more cooperation is ‘on-
demand’ i.e. people cooperate when they need to do
so. The patterns of cooperation and its synchronicity
are impossible to specify in advance

 The division of labour is flexible and is constantly
renegotiated, often implicitly based on the current
demands of the work

 Cooperation depends on the knowledge of the agents
involved. It cannot be defined in advance

On-demand cooperation

 On-demand cooperation is an informal process.
 Documents are passed from A to B with scribbled notes in

the margin giving information about what has been done
and what is required

 People leave notes for themselves and others about actions
and artefacts

 Informal meetings are recorded by annotating documents
with the conclusions of these meetings

 On-demand cooperation is the principal mechanism for exception
management in many processes
 When things go wrong, the formal process models are often

discarded and opportunistic, on-demand cooperation is used
to handle the exceptions

Awareness

 Work often depends on the awareness of what others
people are available, what they are doing and what
they have done

 An informal notion - formalising awareness changes its
nature and is practically impossible

 Workplaces are often arranged to support awareness
 Public and private spaces
 Co-location of related tasks

 Awareness may be a trigger for on-demand
cooperation

Office reality

Awareness and reminders

 Informal mechanisms of communication
 Universal - no previous knowledge is required to use

them and they may be used anywhere
 Visible - they are obvious on a document or in a

workplace
 Identifiable - different handwriting identifies the

producer. In some cases, explicit actions (different
colours of pen) may be used to identify the writer.

 Mechanisms for awareness
 People use stickies for reminders of what to do
 Others can look at these stickies to become aware of

what is being done

Flight strips

 The artefact as an audit
trail
 Flight strips are used to

record ATC commands
 The written annotations

on the strip are visible
to all of the team and
provide awareness of
the state of the aircraft

Awareness and dependability

 Strips may be ‘cocked out’ of the rack showing that a
flight is, in some way, a special case

 Different people can write on the strips using different
colours of pen - awareness of who has done what

 The number of strips on the rack provides workload
awareness - how busy is a sector and what workload
adjacent sectors should plan for

Workarounds

 Workarounds are deviations from some ‘normal’
process that people invent to cope with problems

 Workarounds allow the work to be done in situations
where information or other resources are not available

 Workarounds often involve ‘breaking the rules’,
individuals exceeding their authority or taking on new
roles

 Although often not formally sanctioned in an
organisation, they are generally known and tolerated
as they lead to enhanced dependability

Workarounds are important

 In a chemotherapy unit, a common failure was that the doctor
involved forgot to order the required drugs for the patient’s
treatment

 The workaround for this was for nurses and the hospital
pharmacy to ‘break the rules’

 Nurses wrote the prescription and the pharmacy dispensed the
drugs. The doctor then signed the prescription when he or she
arrived for the treatment

 Then the hospital introduced a computerised prescribing system
which automatically sent prescriptions to the pharmacy
 This system, of course, embedded the rules and only doctors

were authorised to write prescriptions!

Understanding informality

 The details of some tasks, particularly those which are context-
sensitive are difficult to articulate. Observing people doing these
tasks is a better way of understanding the work than asking
them about them.

 Ethnography is an observational method of social analysis
whereby a social scientist becomes absorbed into a culture and
observes the details of the practices in that culture.

 Its fundamental assumption is that details are as important as
abstractions and details can only be discerned by prolonged
observation

 It can be used, in a modified way, to study various types of
work, particularly where this work has a social element

Benefits of ethnography

 Understanding the real process
 Whatever process is specified, practitioners rarely follow the

formal process. Providing process support based on this
formal process has been, in many cases, unsuccessful

 Understanding cooperation
 Many tasks are explicitly or implicitly cooperative. As

ethnography is a method of social analysis, it can help
understand this cooperation. Structured analysis methods
and task analysis tend to factor out cooperation from the
process

 Understanding awareness
 In some types of work, actions depend on awareness of

other actions. Ethnography, with its focus on detail, can
recognise this.

Problems with ethnography

 Non-judgmental
 The ethnographer presents information about the work

without making an assessment of its importance
 Prolonged

 Ethnography (typically) takes a long time
 Personalised

 Ethnographers keep detailed notes of their observations but
our experience is that these notes are not readily
understood by anyone apart from the observer

 Disassociated
 Up till now, ethnography has been a separate part of the

analysis process. There has been little work on using
ethnography with other forms of analysis

Questions?

Socio-technical systems
engineering

 Taking an holistic view of systems engineering where
we consider human, social and organisational as well
as technical issues in the system design.

 Moving from ethnography to an approach to social
analysis that can be more readily integrated with
systems engineering processes.

 Making observational techniques from the social
sciences accessible to systems and software
engineers.

Social analysis and software
engineering

 Evolving ethnography for use in different settings
 Ethnographic viewpoints
 Cultural probes

 Integrating social analysis into systems engineering
processes
 The Coherence method
 Responsibility modelling

 Generalising ethnography
 Patterns of interaction

 Ethnography and software testing

Ethnography in systems
engineering

 There is a mismatch between the representations used
by ethnographers (free text notes, photographs,
recordings) and those used in systems and software
engineering methods

 Few systems engineering projects have the resources
to employ ethnographers

 Ethnographers have no tradition of generalisation with
the consequence that organisational learning is
difficult

Coherence

 A ‘lightweight’ method which allows requirements engineers to
apply some of the lessons we have learnt from several years of
ethnographic studies

 The method includes
 Process guidance - how to look for and recognise social

issues which may affect the requirements for a system
 Representation guidance - how to represent the social

analysis using graphical system models
 Notations in Coherence are based on the UML

 Accepted standard for OO analysis
 Good quality tool support is available (with some

extensibility)

Viewpoints and concerns

 Viewpoints
 Perspectives on a process or system which provide a partial

description of the system. The descriptions may represent
the existing process or system or the desired process or
system. They are a means of organising and structuring the
elicitation and presentation of system requirements

 Concerns
 Issues which are of relevance to all viewpoints and which

are orthogonal to them. In requirements analysis, these
may represent business goals such as ‘time to market’ or
overall system attributes such as efficiency, safety and
functionality.

Viewpoints and concerns

Schedule Safety Functionality

Concerns

Viewpoints
Equipment

Operators

Line managers

Organisation

Socio-political
environment

Specific
requirements

Societal
requirements

Social viewpoints and
concerns

Paperwork and
computer work

Distributed coordination

Plans and procedures

Awareness of work

Skill and local
knowledge

Spatial and temporal
organisation

Organisational
memory

Social viewpoints

 Social viewpoints give requirements engineers guidance on how
to organise their social analysis

 We have identified three viewpoints that seem to be fairly
universal
 Distributed coordination

 The coordination of people and tasks as part of everyday
work

 Plans and procedures
 The role of organisational plans and procedures which both

facilitate and inhibit processes
 Awareness of work

 The organisation of activities to promote awareness of the
work by the people involved in the process

Viewpoint examples

 Distributed coordination
 Air traffic control is a team activity involving 5

controllers in each sector. How do they share tasks,
cope with heavy loads, coordinate their activities etc.

 Plans and procedures
 In an ATC system, different teams have evolved

different control strategies which follow to a greater or
lesser extent the formal ATC procedures

 Awareness of work
 Awareness of other controller activities is critical for

safety in an ATC system. It is also important for
workload planning

Concerns

 Paperwork and computer work
 How is paper and technology used in the workplace?

 Skill and the use of local knowledge
 How are skills and local knowledge applied?

 Spatial and temporal organisation
 How does the physical and temporal organisation

affect the performance of the work?

 Organisational memory
 How is implicit organisation knowledge used to

facilitate the performance of work?

Paperwork and computer
work

 Distributed coordination
 How is work coordinated through the use of paper and

computer-based forms?
 How do forms embody the work and the people doing the

work?
 Plans and procedures

 To what extent do people trust descriptions of the system
that they use?

 If a procedure specifies the use of specific representations,
is this use monitored by the organisation?

 Awareness of work
 How does paper and the affordances it offers facilitate

awareness

Process steps

 Determine the appropriateness of concerns in the
current content

 Elaborate concerns to more specific questions
 Identify additional viewpoints (not social viewpoints) in

addition to the social viewpoints
 Interact with stakeholders to understand the system

requirements
 Elaborate requirements as annotated use-cases and

supporting UML models

Concern choice

 Decide whether or not the identified social concerns
are relevant in a particular context
 For example, the spatial organisation concern is likely

to be important where work is co-located and
synchronous but less significant where work is
distributed and asynchronous

 Identify other concerns which are relevant
 Social analysis is part of the elicitation process but its

coverage is incomplete. Other concerns e.g. based on
business goals may also be relevant and these should
be identified at this stage

Concern elaboration

 Concerns are elaborated to more specific concerns and, finally,
into a set of questions. The analyst looks for the answers to these
questions during the elicitation process

 Spatial and temporal organisation
 Sub-concerns might be use of shared space, use of private

space, physical workspace layout, synchronous organisation,
asynchronous organisation

 Possible questions:
 How are shared workspaces organised?
 Does data have a ‘use-by’ date
 How does work move from shared to private workspaces
 How does the physical layout of the workspace facilitate

information retrieval

Viewpoint identification

 We have already identified 3 social viewpoints. This stage is
concerned with identifying other viewpoints which may be
relevant and understanding the relationships between these and
the social viewpoints
 End-user viewpoint - concerned with specific tasks
 Management viewpoint - concerned with the results

produced by end-user viewpoints
 Relationships with social viewpoints

 End-user tasks may depend on distributed coordination
 Plans and procedures may explicitly define end-user task

processes
 End-user tasks may be facilitated by awareness of other

work

Requirements discovery

 Investigation of a workplace to develop a better
understanding of that workplace. Requirements
emerge from this understanding

 Driven by concerns not viewpoints. Concerns provide
the questions that should be answered for each
viewpoint. Social concerns may also be relevant to
other (non-social) viewpoints

 Essentially opportunistic but facilitated by the
questions which are generated from the concerns.

 Questions may be answered through interviews,
observation, existing documentation, etc.

Awareness of work viewpoint

Name: Awareness of work
Focus: How the physical organization of the control suites affects how controllers can

make sense of each other’s activities. How controllers monitor the work of
other controllers, and how controllers orient their work to facilitate others
monitoring it.

Concerns: Paperwork and computer work
Skill & the use of local knowledge
Spatial and temporal organization
Organizational memory
Safety
Volume of traffic

Sources: Controllers, and observation of controllers at work
Requirements:

AW1 (Making work available)
AW2 (Availability of awareness information)
AW3 (Relationship of suite layout to controlled airspace)

Object-oriented analysis

 Jacobsen’s approach to OOA which is reflected in the
UML is based on the notion of use-cases where a use-
case represents some interaction with a system

 Applying the Coherence approach helps us to find and
understand relevant use-cases and helps with the
documentation of use-cases

Make reservation

Client Receptionist

Coherence and use-case
models

 Actor Interactor stakeholders are identified and then used to
generate viewpoints

 Use case Use case descriptions are generated by plans &
procedures viewpoint

 Problem domain object model Problem domain objects are
identified by distributed coordination and awareness of work
viewpoints

 Object model Fragments of model are generated by
awareness of work viewpoint

 Interface descriptions Not directly addressed by Coherence,
but can be recorded in UML models

Use-case identification

ActiveController

ChiefController

Standard Flight

Non-standard flight

Create flight strip

Create pending strip

Create live strip
Assistant
Controller

<<Extends>>

<<Uses>>

<<Uses>>

<<Extends>>

<<Extends>>

Awareness annotations

DeadStrip

Controller

FlightStrip
reportingPoint : beaconCode
flightLevel : int
callSign : callCode
squawkIdent : ident
originPoint: beaconCode
origin : Time
aircraft : aircraftType
routeInfo : routeList

create()
remove()
update()

PendingStrip

elapsedTime : Time

check()
calculateETA()

LiveStrip

ETA : Time

<<awareness>>
Annotation

modifiedField
change
controllerID

0..* o..*
modified by

Modelling communication

 Providing system designers with models of
communications between the participants in a process
helps them develop an understanding of how to
support that communication

 The distributed coordination viewpoint captures
communications. These can be modelled using
(extended) UML sequence diagrams that show
interactions between people as well as interactions
between a system end-user and the objects that are
modified in that interaction

Flight coordination

Controller: ‘Speedbird 799L …
descend flight level 120’

Pilot: ‘Speedbird 799L … roger,
descend flight level 120’

Writes it on strip

Controller Speedbird 799L
Flightstrip

Coherence benefits

 Provides a framework for social analysis that can be
used by software and systems engineers

 Provides a means of structuring the presentation of
fieldwork to engineers

 Uses structured notations that are accessible to
engineers

 However, more work required on how to translate
insights from social analysis into design
recommendations

Integrated STSE

 New project (starting later this year) whose aim is to
integrate this work with other approaches to create a
socio-technical systems engineering process

 Integrated with work on design for failure and
modelling responsibilities in complex systems

 Part of the UK’s research programme in Large-Scale
Complex IT systems (Southampton, St Andrews, York,
Leeds, Oxford Universities, IBM, Rolls-Royce, NHS..)

Summary and conclusions

 System dependability is more important than software
dependability

 Techniques for achieving software dependability do
not translate well to modern business systems

 We must understand the socio-technical environment
of a system so that we can design for failure

 Ethnography is effective but unrealistic for most
businesses

 The COHERENCE approach uses socio-technical
viewpoints as a means of integrating social analysis
with system requirements engineering

