
Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

University of Lancaster 1994. Copying without fee is permitted provided that the copies are not
made or distributed for direct commercial advantage and credit to the source is given. For other copying,
write for permission to:-

Computing Department, Lancaster University, LANCASTER, LA1 4YR, UK.
Phone: +44-524-593041; Fax: +44-524-593608; E-Mail: cscw-info@comp.lancs.ac.uk

LANCASTER
U

Computing
Department

NIVERSITY

Requirements Engineering for
Cooperative Systems

Ian Sommerville and Tom Rodden

Centre for Research in CSCW

Research report : CSCW/1/1994

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 2. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

Requirements engineering for cooperative
systems

Ian Sommerville and Tom Rodden,
Computing Department,
Lancaster University,
LANCASTER LA1 4YR, UK.
E-mail: is@comp.lancs.ac.uk

Abstract
This paper addresses the problem of ‘production-quality’ CSCW software development
where software is developed from an agreed statement of the system requirements. In
particular, we are concerned with ways in which requirements specifications for CSCW
systems can be developed and with the integration of ethnography into traditional
specification methods. Existing approaches to requirements engineering are briefly
described as are our experiences of using ethnographic studies in systems requirements
analysis.

We suggest that existing requirements analysis methods and ethnography must both
evolve to accommodate the strengths of the other approach to produce an effective and
complete method of deriving cooperative system requirements. An investigation of the
changes required to notations for system description and analysis methods is a long-
term research goal. However, we suggest shorter-term results can be obtained by using
integrated tools for ethnography and requirements capture.

Introduction
By and large, commercial CSCW products such as Microsoft Windows for work
groups or Lotus Notes have not been based on an analysis of a work setting which
revealed the need for cooperative systems support. Rather, they have been derived by
adding cooperative features to existing personal systems or by providing neutral
information exchange mechanisms. This approach is an understandable first step to
CSCW systems development which can provide simple, low-level cooperative support.

Systems which are required to closely support work and which incorporate
knowledge of the work itself need a systematic approach to understanding end-user and
organisational requirements for CSCW. Simply adding some technical support for
more than one user to existing products without an understanding of the work setting
where these products will be used will result in products with severely limited
applicability.

Furthermore, a disciplined and professional approach to CSCW systems
development will be required to produce systems which are efficient, reliable, portable
and maintainable. The software engineering approach to development involves a
number of identifiable activities:

1. Requirements analysis and specification
This involves understanding an existing work setting and specifying the required
functions and properties of the supporting CSCW system in sufficient detail that
these requirements can form the basis for a contract for system development.

2. System design and development
A system must be designed and implemented in such a way that it meets its
specification and can be maintained over a long lifetime. This requires the use of
standards, well-documented designs, structured programming and extensive system
documentation.

3. System validation against the specification and the users’ needs
The system must be validated against its specification to demonstrate that the

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 3. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

contract to develop the system has been fulfilled. It must also be checked against the
users’ requirements to demonstrate that it provides effective user support.

 The specify-design-build process model is almost universal for large-scale
software projects. A specification of the software is defined and a system procurer
(who is responsible for developing the specification) lets the contract to develop the
software to a system developer (who is responsible for designing, implementing and
validating the software). Where software is developed as a product, the marketing
department of the company acts as the system procurer; for bespoke software systems,
the system procurer and the system developer are often separate organisations.

This model of software development was derived from the general engineering
procurement model and is deeply embedded in industrial culture. Its is used because it
separates the notion of specification from ‘manufacture’ and hence allows these
activities to be carried out in different organisations. The development of a clear
specification is central as it may be the basis of a legal document setting out what work
will be paid for by the procurer.

The existence of a complete specification means that competitive tendering for the
system design and implementation is possible. Because of the size of large systems,
they can only be developed in a reasonable time by implementing sub-systems in
parallel which might be developed by different contractors or by separate teams. The
separation of design from implementation simplifies parallel development. The
separation into stages with a definite end-point simplifies project management. For all
of these reasons, this model or some variant of the model will continue for the
foreseeable future as the principal process model for non-trivial software systems.

 However, difficulties with this approach are well-known. Developing a
specification by relatively abstract analysis and freezing this at an early stage in the
process means that it often does not meet the real needs of system users. To address
these difficulties, techniques such as participative and user-centred design (Greenbaum
and Kyng 1991) (Norman and Draper 1986) which involve end-users in the
development process have been developed. These are undoubtedly effective in some
situations and result in systems which are often more attuned to user needs.

User-centred approaches are most effective when the system can be developed by a
relatively small team of users and developers. However, they suffer from a number of
fundamental limitations which means that they do not scale up well to the development
of large, long-lifetime systems:

1. They rely on evolutionary prototyping to develop the software. This works very
effectively for the first version of the system but this approach tends to result in
relatively unstructured systems which are difficult to understand, often unreliable
and expensive to maintain.

2. There is never a complete system requirements specification to act as a basis for
system procurement. This means that it is very difficult to draw up a contract for the
re-implementation of the prototype.

3. There are problems in a user-centred approach in understanding system
cooperation. Any one user may not be able to see the ‘big picture’ of how the
different users of the system interact with the system and with each other and how
they must support the organisation.

A current research challenge is to develop a model of the software process which
allows for the use of user-centred methods during a large systems development project.
At the moment, these methods are sometimes used to support the development of a
system prototype as part of the requirements analysis phase. However, the additional
cost they impose has meant that their use has been relatively limited. We do not wish to
suggest that we are hostile to the notion of participative and user-centred design.
Rather, we recognise that this approach has limitations and that it is not straightforward
to apply this method in the development of large-scale, CSCW systems.

Proponents of user-centred approaches recognise this difficulty and suggest that it
might be resolved by modifying the way in which software is procured (Grudin 1991).

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 4. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

Grudin suggests that software procurement should be service-oriented rather than
product-oriented i.e. you buy a service which you trust rather than write detailed
product specifications. Whilst this is perhaps the best solution from a technical
perspective for some classes of interactive system, we believe that it is somewhat naive.
It would require immense organisational change to bring about and would require the
notion of a contract between procurer and developer to be redefined. Realistically, this
is unlikely to happen soon and the vast majority of software will continue to be
developed according to the above software process model for the foreseeable future.

 We are concerned with the integration of CSCW and professional software
engineering. We recognise that conventional approaches to requirements engineering
are inadequate for CSCW yet recognise also that ‘human-centred’ approaches do not
meet the industrial need for a clear system specification. An objective of our work is to
investigate how ‘human-centred’ analysis methods such as ethnography which
recognise explicit and implicit human cooperation may be integrated with more
conventional approaches to system requirements engineering.

The work on which this paper is based has been concerned with observations of air
traffic controllers (Bentley et al. 1992) and systems designers cooperating to design and
develop a complex hardware/software system. This work is not just concerned with
understanding the work setting but has the explicit objective of identifying requirements
for a software support system.

This paper reports on some of our preliminary conclusions on the advantages and
disadvantages of using an ethnographic study as part of a systems requirements
engineering process. To place this work in context, we briefly describe structured
approaches to requirements engineering and ethnographic work which has been
concerned with understanding cooperative work settings. We present our conclusions
concerning the strengths and weaknesses of ethnography for understanding system
requirements and then suggest a research agenda for integrating ethnography into the
technical process of requirements engineering.

Requirements engineering
The most widely used approaches to system requirements engineering are based on
building data-centred and process-centred models of the system.

1. Data-centred models are concerned with describing the structure of the data that is
processed by the system. The most widely used data-centred model is an entity-
relationship model (Chen 1976) which shows the entities in a system, their
attributes and their relationships. Other models track the dependencies between data
entities and the life history of data in a system.

2. Process-centred models are concerned with describing data processing as a data
entity moves from one ‘processing station’ to another. A ‘processing station’ may
be a program or a person and each ‘processing station’ is responsible for some data
transformation. Thus an approach such as data flow modelling (DeMarco 1978)
shows the processing stations involved in a process and names the data which
‘flows’ from one processing station to another.

Until recently, a process-centred model was seen as central with the data model as
subsidiary to it. However, the development of object-oriented analysis (Coad and
Yourdon 1990) (Rumbaugh et al. 1991) has reversed this with the objects (data) in the
system being identified and specified before the processing steps.

None of the widely-used analysis methods, irrespective of whether they are based
on a process-centred or a data-centred approach, explicitly allow for the inclusion of
negotiation and cooperation. They do not even recognise or provide notations for
denoting user interaction. It is left to the judgement of the requirements engineer to
determine how much interaction and cooperation should influence the system
requirements.

We are convinced that the failure of many interactive software systems to meet the
real needs of their users is at least partially due to the fact that they ignore this essential

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 5. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

dimension of cooperation. It really depends on whether or not the individual
requirements engineer implicitly applies a user-centred approach and recognises the
importance of cooperation and is sufficiently sympathetic and intuitive to understand the
cooperation and reflect this in the system requirements.

Some methods of requirements engineering have adopted the notion of viewpoints
(Kotonya and Sommerville 1992) where it is explicitly recognised that requirements for
a system derive from different sources who may have quite different perceptions of the
system. These ‘viewpoint-based’ approaches are principally concerned with looking at
viewpoints in isolation rather than as cooperating entities. They provide a way of
reconciling conflicting needs (which is a key problem in requirements engineering)
rather than identifying viewpoint interactions and cooperation. However, proponents
of these methods recognise the importance of cooperation (Finkelstein et al. 1992) and
these viewpoint-oriented approaches may, in future, include explicit cooperation
specifications.

Understanding work using ethnography
Ethnography involves an observer spending an extended period of time (sometimes
several years) living in a society and making detailed observations of its practices.
Subsequent analysis of these observations reveals information about the structure,
organisation and practices of these societies. Key characteristics of ethnography are that
(in principle at least) there are no pre-suppositions about the society being studied, there
is no list of questions to be answered and the ethnographer does not try and impose his
or her value judgements on the practices which are observed.

These techniques have also been applied to an analysis of work where an
ethnographer spends several months in a working environment observing and noting
practices, cooperation and processes. The rationale for these studies is that actual work
practices often differ quite markedly from the ‘prescribed practices’ set out in company
manuals and handbooks. It is usually the case that a ‘working division of labour’
(Anderson et al. 1989) evolves where a team organises itself to carry out a task
irrespective of the job descriptions and job titles defined by the organisation. This
working division of labour is not static. It is continually re-negotiated depending on
circumstances, resource availability and priorities.

The potential value of ethnography in deriving computer system requirements was
first identified in seminal work by Suchman (Suchman 1983; Suchman 1987).
Subsequently, further studies concerned with air traffic control (Harper et al. 1991),
police database systems (Ackroyd et al. 1992), underground railway control (Heath and
Luff 1991) and financial dealing systems (Heath et al. 1993) have confirmed that an
ethnographic study can give real insights into working processes which should be taken
into account when deriving computer system requirements.

The notion that there is a fixed process or procedure for most tasks which can be
automated is, of course, an over-simplification. The existence of this ‘working
division of labour’ rather than the prescribed organisation is one important reason why
the requirements for a software system are often such that the system does not meet the
real needs of end-users. The system requirements are defined according to documented
procedures and standards but don’t take into account actual working practices.

Involving prospective end-users of a computer system in the requirements analysis
does not solve this problem. We know from work in knowledge acquisition that
experts find it very difficult to articulate their expertise. It is equally if not more difficult
for end-users to describe the working division of labour which is, in fact, informal and
dynamic. In some cases, the actual work practices may be quite contrary to
organisational standards and the end-users of the technology will simply not admit that
these practices go on.

Requirements engineering with ethnography
Our work using ethnography for requirements analysis has been mostly concerned with
two different types of domain:

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 6. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

1. The relatively narrow domain of air traffic control where all of the participants have
a common goal and share common representations. These representations act as a
focus for cooperation and are used to mediate and coordinate the work involved.

2. The broader domain of systems design. Although in principle the participants share
a common goal (the production of a working system), in practice, the goals of the
different teams working on the designs are concerned with their specific part of the
system. There is no single shared representation; indeed differences in the
interpretation of specialised representations are often a source of
misunderstandings.

Curtis et al (Curtis et al. 1988) identified the lack of application domain knowledge
as the most significant problem in requirements engineering. Ethnography is important
in developing this knowledge as the ethnographer’s viewpoint is not that of a system
engineer. He or she is not limited by trying to fit an application domain into a context of
data-centred and process-centred models but deliberately approaches the understanding
of the domain with an open mind.

We have found (perhaps unsurprisingly) that the ethnographic studies in the
focused application domain have been more fruitful in deriving requirements for a
support system based around the shared representation. During our work on design,
we have learned much about the design process. However, this information, while
identifying cooperation in the process, is not detailed enough to allow us to derive
detailed tool support requirements. While it is dangerous to draw general conclusions
from our limited experience, our work suggests that, in the near future, ethnographic
studies whose objective is requirements analysis are likely to be more cost-effective in
these focused domains rather than in more general design work. Hughes et al.
(Hughes et al. 1994) discuss this and other uses for ethnography in the systems design
process.

The application domains which we have studied are discussed elsewhere (Bentley,
Rodden et al. 1992). In the course of these studies, we have learned a great deal about
using ethnography to understand system requirements. The general advantages of
studying an application domain which requires automated support using ethnography
are:

1. Explicit identification of cooperation
An objective of our research was to discover if ethnography was an appropriate
technique for identifying subtle, often implicit, cooperation which was central to the
functioning of some system. In this respect, the ethnographic work was very
successful. The ethnographic studies of air traffic controllers, for example, revealed
that cooperation involving ‘at a glance’ understanding of other controller’s displays
was an essential part of the process. It showed us that the often-stated requirement
for user tailorability (Fischer and Girgensohn 1990) would be a dangerous facility
to add to the system as controllers would need to take more time to understand other
controller’s displays.

2. Identification of process and data variability
A central assumption which underlies conventional requirements engineering is that
both processes and data change relatively slowly (over months or years). In fact,
our studies have revealed that processes particularly are rapidly re-configured by
participants in these processes to cope with exceptions, other demands on their time
or organisational changes which invalidate some of the assumptions on which
process models are based. Even the structure of data may change informally as
individuals cope with deficiencies in the given data organisation.

3. Identification of organisational influences on system requirements
Data and process-centred approaches to requirements universally ignore the
organisation and organisational culture in which the system is to be delivered. Our
ethnographic work has revealed that the organisational structure and culture is a
critical factor in making a system work. While we have not yet studied how it might
influence system requirements, we are convinced that this is a critical factor.

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 7. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

4. Rationale provision
A serious defect of all current requirements methods is that they abstract rationale
out of the description. System requirements are specified but no record is
maintained of why a particular requirement is necessary. This leads to
misunderstandings of the requirements and to significant problems when
requirements change. Often changes impact the system in unpredictable ways
because the person changing the system does not realise why a particular facility
has been provided. An ethnographer not only records actual activities but also looks
for the underlying reasons why these activities have evolved. This information can
and should be associated with specific system requirements. In the short-term, we
believe that this provision of rationale is one of the most important contributions
that ethnography can make to system specifications.

A positive ‘side-effect’ of ethnography is that end-users feel more involved in the
process. When structured methods are used, end-users may feel left out of the
requirements analysis process as the process is designed to treat them as ‘processing
stations’ rather than as intelligent participants in a complex process. Ethnography has
the advantage that is involves users and allows them to volunteer system requirements
and to identify shortcomings of existing systems.

These advantages have convinced us that ethnographic studies have a role to play in
the requirements engineering process. However, the work also revealed several
problem areas which must be tackled before ethnography can be used systematically in
commercial projects:

1. The ethnographic process
A model of the process which we used to understand system requirements from
ethnographic studies involved developing a prototype system in parallel with the
ethnography. Regular debriefing sessions involving the ethnographer and the
system developers were held and the prototype system was modified according to
information derived from these sessions. This approach, which took place over a
period of about 18 months, allowed us to derive useful but incomplete system
requirements.

While a prolonged ethnographic study is possible for very large system
development projects where the specification phase may last 2 or 3 years, it is
unrealistic for the majority of system specification activities. These must be
completed in a relatively short time (typically 2 or 3 months) if the customer’s
delivery time is to be satisfied. We need to telescope the ethnographic process so
that effective results can be delivered quickly. We also need to find ways in which
observation-based analysis can be integrated effectively with data and process based
analysis with both of these analyses carried out in parallel.

2. The nature of the ethnographic record
The results of an ethnographic analysis are usually recorded as unstructured text
with inevitable overlaps, repetitions, etc. It is difficult for this text to be used by
anyone apart from the ethnographer who was involved in the process. Furthermore,
the collected data may be in the form of hand-written notes, electronic text, printed
documents and diagrams, audio and video tape recordings etc. The heterogeneous
nature of this record compounds the problems of finding information.

There is a need for methods, notations and tools which allow the ethnographic
record to be structured and organised so that it can act as an effective supplement to
the system requirements document. As discussed in the previous section, the
ethnographic record is not just a source of requirements, it can also act as rationale
for system requirements. We need to be able to move quickly from a specific
statement of a requirement to its associated rationale.

3. Inter-disciplinary communications and education
Most ethnographic work is currently carried out by anthropologists or sociologists
with most requirements analysis carried out by computer scientists or engineers.
These disciplines have little in common in that they adopt quite different
methodological approaches to a problem, use mutually incomprehensible jargon and

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 8. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

suffer from mutual distrust which, for historical reasons, has developed between
‘soft’ and ‘hard’ sciences.

Our work has shown that the barriers between disciplines can be breached
(Sommerville et al. 1992) given that each group is motivated to do so. However,
introducing ‘soft’ techniques into ‘hard’ engineering will require a new approach to
the training of requirements engineers.

Cooperative systems requirements engineering
The current procurement model for software systems is deeply embedded in our
organisational structures. Because of the dominance of this model, it is inconceivable
that existing approaches to requirements engineering will be discarded in favour of
‘user-centred design', ethnography or any other ‘human-centred’ approach. CSCW
systems will have to be developed within this framework. The key challenge is not the
development of new methods to replace existing methods but the adaptation of existing
approaches to requirements engineering to take account of human cooperation and the
‘working division of labour’.

The integration of ethnography with requirements engineering can be addressed
under three closely related headings:

1. Methodology. How can we derive an approach to ethnographic observations which
can be integrated into structured methods of requirements engineering and which
can be taught to engineers involved in requirements analysis?

2. Notations. How can we develop structured, concise and precise notations to
describe cooperation and the working division of labour?

3. Tools. What tools are required to help organise the ethnographic record and to
integrate ethnographic observations with structured requirements?

Before such integration is possible, the disciplines involved must be convinced that
the viewpoints and perspectives of the other disciplines are relevant and of importance.
Sadly, there is often a vast gulf of misunderstanding between ‘pragmatic’ software
engineers and ‘people-oriented’ disciplines such as sociology. These latter groups have
had little exposure to engineering projects and find it difficult to relate to the design
problems which are tackled by the engineers. Similarly, engineers find it difficult to
come to terms with the use of very detailed natural language rather than formal
notations and the lack of abstraction which characterises social science disciplines.

This reflects the fundamental methodological differences between the disciplines.
Ethnographers and other behavioural scientists are trained in analysis and evaluation.
They try to avoid making judgements during the analysis process. By contrast,
engineers are trained in design and synthesis. Making judgements and formulating
abstractions are fundamental aspects of design. These perspectives must be merged if
ethnography is to contribute to requirements engineering.

 Bridging this gap is not easy. Few organisations are large enough to require a
dedicated team of social scientists working as ethnographers in requirements analysis.
It seems likely then that ethnography and other ‘human-centred’ approaches must
therefore be undertaken by non-specialists (such as systems engineers and end-users)
as part of the requirements process. This will require the expertise of anthropologists
and sociologists to be applied to the training of requirements engineers. This training
could be simplified if a more systematic ethnographic ‘method’ for those less-expert
users is developed. This should incorporates hints and guidelines about how to perform
an ethnographic study.

Methods

In engineering terms, the ‘ethnographic method’ is very informal and (perhaps
simplistically) seems to involve an ethnographer ‘hanging around’ with the group being
studied. This, of course, reflects the underlying precept of ethnography that it should

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 9. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

let understanding of a culture emerge rather than be biased by some methodological pre-
conceptions.

This approach contrasts strongly with the increasing trend in software development
to make use of ‘structured methods’ for deriving the system requirements. Typically, a
structured method will include a standard set of notations to express the system model,
rules defining a ‘correct’ model, guidelines on good practice and the process to be used
to derive the model and a standard set of report formats. In short, the trend is towards
prescription in deriving and denoting the analysis.

Structured methods have the advantages that they lead to extensive system
documentation expressed in a standard notation and there is usually a clear route from
the methodically derived description to implementation. However, the guidance
provided by the method is incomplete for many work settings. In particular, support
for cooperation or indeed any form of user interaction with the software is a critical
omission of current structured methods. The practical result of this is that these
methods are rarely applied as defined. In a study which confirmed some of the
imperfections of Structured Analysis (a widely-used method), Bansler and Bødker
(Bansler and Bødker, 1993) state:

“In conclusion, our interpretation of what happens in practice is that experienced
designers - instead of following the rules and procedures of Structured Analysis -
pick and choose among the various formalisms given in the method, adapt them for
their own purposes and integrate them into their own design processes.”

Applying structured methods may sometimes reduce rather than increase the quality
of the requirements specification. Because of omissions and imperfections in the
method, the analyst may be guided away from rather than towards key system
requirements. Nevertheless the use of these methods has significant benefits to an
organisation in that they provide a basis for quality assurance (in the sense that quality
means following a defined method) and they provide standardised documentation
which is essential for systems which will evolve over many years. In spite of their
problems, these methods are unlikely to be discarded in favour of less structured
alternatives. Rather than argue for their rejection, we prefer to look at how they can be
supplemented with more informal knowledge.

The informal nature of the ethnographic approach means that many software
engineers are likely to reject ethnography because of their inherent suspicion of
informality (the trend in software engineering since the 1970s has been towards
formality). We have written elsewhere of the need to support informality in the
software process (Sommerville and Monk 1994) so we do not share this suspicion of
development methods which are inherently reliant on human judgement. Nevertheless,
we believe that the need for ethnography to be a flexible and opportunistic process does
not preclude the incorporation of more focused, deterministic approaches to analysis.

The development of a more structured approach to ethnography which would allow
practitioners who were not themselves behavioural scientists to apply an ethnography
effectively in requirements engineering. This, of course, means that the ‘pure’
ethnographic approach must evolve to accommodate more direction and explicit focus
so that the time and effort required for analysis is significantly reduced. However, we
believe that compromising ‘pure’ ethnography is worthwhile if that is what is required
to make it useful in an engineering context. If we can get 80% of the positive value of
‘pure’ ethnography with 20% of the effort, the changes are certainly worth making.

We would also like to see this more structured ethnography incorporated into
existing structured methods for requirements engineering. Although this must be a
long-term rather than a short-term objective, we believe that the approaches to
requirements engineering based on viewpoints (Kotonya and Sommerville 1992) can
be an effective starting point for the development of such a method. We are currently
exploring this possibility where we identify viewpoints in the domain being studied and
analyse cooperation across and within viewpoints. Initial results are encouraging but
more extensive experience will be required before we can draw any conclusions about
the approach.

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 10. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

Notations

An ethnographic record of work practice is inherently unstructured. It consists of
observations of work processes made over an extended period of time. Inevitably, there
is a significant amount of duplication and the information collected ranges from specific
observations of particular activities to anecdotes and ‘war stories’ told by workers to
the ethnographer. Ethnography is almost completely dependent on natural language for
expressing knowledge of a work setting. When this ethnographic record is used by
non-specialists who are involved in requirements analysis, 3 problems can arise:

1. The readers and writers of the description may not use the same words for the same
concept. This can lead to misunderstandings because there may be no shared
vocabulary for the work being studied.

2. The sequential nature of the record may mean that similar requirements are
expressed in completely different ways. The reader has to find related requirements
with the consequent likelihood of error and misunderstanding.

3. The ethnographic record is not partitioned so the inter-relationships between
observations can only be discovered by examining all observations.

By contrast to the natural language used to express ethnographic observations,
requirements specification typically uses a mixture of structured diagrams expressed
using different graphical notations, natural language, and, increasingly, formal
mathematics. The trend is away from natural language towards more formal notations
because of the difficulties identified above.

Because of the excessive richness and flexibility of natural language descriptions,
there is a strong case for developing a more structured notation for expressing
ethnographic observations. This would serve the purpose of structuring and indexing
the corpus of field material collected during an empirical study.

The development of such a notation is obviously a long-term research goal which
might be carried out in conjunction with the development of methodical approaches to
ethnography. We are not suggesting, of course, that such a notation should be the sole
means of describing cooperation. There are circumstances where only natural language
will suffice. Rather, we are suggesting that a notation with natural language annotations
will simplify the problem of ethnography becoming acceptable to software engineers.

Tools

We cannot realistically expect short-term results in the development of more structured
methods and notations for ethnographic observations. To develop methods and
notations, we need more studies on the use of ethnography in requirements engineering
to provide basic data for this research. However, we believe that ethnography can make
a more immediate contribution to the requirements engineering process, given that we
can effectively organise the ethnographic record.

The need for a more structured ethnographic record is an immediate one if the
results of an ethnographic study are to be part of the requirements for a CSCW system.
The approach which we are currently investigating is to structure the ethnographic
record using software tool support.

Of course, there have been previous efforts to provide tool support for the
ethnographer. ‘The Ethnograph’ (Seidel and Clark 1984)is an example of a computer-
based tool to support ethnographic record management. However, Davies (Davies
1990)comments on this system and comparable tools:

“... impose many unwelcome constraints on the researcher and s/he has to
significantly alter the methods and techniques of analysis to fit in with a given
system”

We believe that forcing ethnographers (or anyone else for that matter) to change
their work to fit available tools is unacceptable. More flexible tools are required which
can be adapted to a particular way of working and which can present information in a

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 11. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

number of different forms. We are now experimenting with a flexible information
management system called the PPIS (Process and Product Information System) which
has been developed from our previous work on supporting the design process
(Haddley and Sommerville 1990; Twidale et al. 1993). This is a hypertext-based
system with a rich vocabulary which allows both entities and relationships of interest to
be given types and selective overall views of a system to be produced.

The advantage of our current approach is that the PPIS supports both informal
information capture and structured notations (Sommerville et al. 1993). We can
therefore seamlessly link information captured during the ethnographic analysis with
more structured system representations such as data-flow diagrams or object
descriptions.

We have adopted a working practice whereby the ethnographer does not work on
site for long, uninterrupted periods but returns regularly to report on the progress of the
work. Interim records can be entered into the PPIS. Entering these into the PPIS
focuses the ethnographer’s attention on the records and often suggests useful
structuring which can take place. The records then become immediately available to the
software requirements engineers. Thus, ethnography and conventional analysis can be
carried out in parallel with the stream of ethnographic information integrated into the
specification as it becomes available.

This tool support also helps us to address the problem of prolonged ethnography
which may be carried out in parallel with other analyses. In essence, the ethnographic
studies generate ‘nuggets’ of useful information at unpredictable intervals. In
conventional ethnography, these are made explicit in an analysis phase where the
ethnographic record is analysed after the field studies have been completed. With the
PPIS, they can be immediately integrated and linked to system entities and processes.

Conclusions
 In systems where there are multiple end-users, cooperating either explicitly or
implicitly, we believe that there is always a dynamic and informal working division of
labour which is unlikely to conform to formal organisational structures or job
descriptions. If a software system is to be successfully used, it must support actual
rather than formal work. Ethnography is one way of revealing this working division of
labour so, potentially at least, can contribute to the process of deriving requirements for
cooperative systems.

Our work has been concerned with investigating how this can actually be achieved
and our general conclusions are:

1. Observational methods such as ethnography have an important role in informing
systems requirements capture and analysis. However, there is not a clear and
simple correspondence between an observational record and a systems requirement
document. An important use of the ethnographic record is to serve as rationale for
system requirements so some means of linking these documents is required.

2. It is extremely difficult to fit ethnographic observations into current structured
methods of requirements analysis as these methods factor out an immense amount
of (useful) information which is collected during the ethnographic studies. Because
their fundamental principles (and indeed their strengths) are based on limiting the
analysts choice, existing analysis methods cannot readily be adapted to incorporate
ethnography. We can only use ethnography with existing methods if we devise
procedures for systematically annotating the models produced by these methods
with information derived from the ethnographic study.

3. Trends in requirements engineering which recognise the importance of multiple
perspectives when deriving system requirements are leading this discipline towards
CSCW and these new methods are the most likely candidates to serve as a basis for
CSCW systems requirements capture. In the longer-term, we foresee the
development of more structured approaches to ethnographic analysis incorporating

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 12. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

viewpoints which will reduce the costs of ethnography and simplify its integration
with other methods of analysis.

4. Ethnography can be used now with structured methods by providing software tool
support which allows all relevant information to be collected and linked. This
linking allows the collection of ethnographic data as background material to
emerging requirements. The tool must not embed any ‘method’ but must support a
transition from informal to formal information organisation.

Acknowledgements
The work described here has been partially funded by the UK Joint Research Council
Initiative in Cognitive Science and HCI and by the European Commission in the
ESPRIT projects Proteus and Comic. Thanks are due to our collaborators in the
Departments of Computing and Sociology namely Pete Sawyer, Richard Bentley,
Michael Twidale, Simon Monk, Dan Shapiro, Dave Randall and Val King.

References
Ackroyd, S., Harper, R., Hughes, J. A. and Shapiro, D. (1992). Information
Technology and Practical Police Work. Milton Keynes: Open University Press.

Anderson, R. J., Hughes, J. A. and Sharrock, W. W. (1989). Working for Profit: The
Social Organisation of Calculability in an Entrepreneurial Firm. Aldershot: Avebury.

Bansler, J.P. and Bødker, K. (1993). “A Reappraisal of Structured Analysis: Design in
an Organizational Context”. ACM Trans. on Information Systems, 11 (2): 165-193.

Bentley, R., Rodden, T., Sawyer, P., Sommerville, I., Hughes, J., Randall, D., et al.
(1992). Ethnographically-informed Systems Design for Air Traffic Control.
CSCW’92, Toronto, Canada, 123—29.

Chen, P. (1976). “The entity relationship model - Towards a unified view of data.”
ACM Trans on Database Systems , 1(1): 9-36.

Coad, P. and Yourdon, E. (1990). Object-oriented Analysis. Englewood Cliffs, NJ:
Prentice-Hall.

Curtis, B., Krasner, H. and and Iscoe, N. (1988). “A Field Study of the Software
Design Process for Large Systems.” Comm ACM , 31 (11): 1268-87.

Davies, J. R. (1990). “A methodology for the design of computerised qualitative
research tools.” Interacting with Computers , 2(1): 33-58.

DeMarco, T. (1978). Structured Analysis and System Specification. New York:
Yourdon Press.

Finkelstein, A., Kramer, J., Nuseibeh, B. and Goedicke, M. (1992). “Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development.” Int J of
Software Engineering and Knowledge Engineering , 2(1): 31-58.

Fischer, G. and Girgensohn, A. (1990). End-user Modifiability in Design
Environments. CHI’90, Seattle, USA, ACM Press, 183-92.

Greenbaum, J. and Kyng, M. (1991). Design at Work: Cooperative Design of
Computer Systems. Hillsdale, NJ: Lawrence Erlbaum Associates.

Grudin, J. (1991). “Interactive Systems: Bridging the Gap between Developers and
Users.” IEEE Computer , 24(4): 59-69.

Haddley, N. and Sommerville, I. (1990). “Integrated Support for Systems Design.”
IEE/BCS Software Eng J , 5(6): 331-38.

Requirements engineering for cooperative systems Ian Sommerville and Tom Rodden 1994

Page: 13. Printed: 8/8/94
File: Papers/Collab. Comp./Requirements engineering for cooperative systems

Harper, R., Hughes, J. and Shapiro, D. (1991). Harmonious Working and
CSCW:Computer Technology and Air Traffic Control. Studies in Computer-Supported
Cooperative Work. Amsterdam: Kluwer. 225-34.

Heath, C., Jirotka, M., Luff, P. and Hindmarch, J. (1993). Unpacking collaboration:
the interactional organisation of trading in a city dealing room. ECSCW’93, Milan,
155-70.

Heath, C. and Luff, P. (1991). Collaborative Activity and Technological Design: Task
coordination in th London Underground control room. ECSCW’91, Amsterdam,
Kluwer, 65-80.

Hughes, J., Rodden, T., King, V. and Andersen, H. (1994). Moving out from the
control room: ethnography in system design. CSCW’94, Greensborough, North
Carolina, To appear.

Kotonya, G. and Sommerville, I. (1992). “Viewpoints for requirements definition.”
IEE/BCS Software Eng J , 7(6): 375-87.

Norman, D. A. and Draper, S. W. (1986). User-centered System Design. Hillsdale,
N.J: Lawrence Erlbaum.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-oriented Modeling and Design. Englewood Cliffs, N.J.: Prentice-Hall.

Seidel, J. V. and Clark, J. A. (1984). “The Ethnograph: a computer program for the
analysis of qualitative data.” Qualitative Sociology , 7(2): 110-25.

Sommerville, I. and Monk, S. (1994). Supporting informality in the software process.
3rd European Workshop on Software Process Technology, Villard-de-Lans, France,
Springer, 114-9.

Sommerville, I., Rodden, T., Sawyer, P., Bentley, R. and Twidale, M. (1993).
Integrating ethnography into the requirements engineering process. RE’93, IEEE
International Symposium on Requirements Engineering, San Diego, CA., 165-73.

Sommerville, I., Rodden, T. A., Sawyer, P. and Bentley, R. (1992). Sociologists can
be Surprisingly Useful in Interactive Systems Design. HCI’92, York, UK, 341-54.

Suchman, L. (1983). “Office procedures as practical action.” ACM Trans on Office
Information Systems , 1(3): 320-28.

Suchman, L. (1987). Plans and Situated Actions. Cambridge: Cambridge University
Press.

Twidale, M., Rodden, T. A. and Sommerville, I. (1993). The Designer’s Notepad:
Supporting and Understanding Cooperative Design. ECSCW’93, Milan, 93-108.

