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Abstract 

Learning, the rate it occurs, and the stages learning goes through are important aspects 
of human behavior and should inform design more often.  Learning provides 
performance improvements, sometimes drastic improvement with practice.  This 
improvement can make designs that are too slow on first use to become more usable 
and remove errors in performance.  The retention curve is similar, in that drastic skill 
loss is also possible and more dangerous.  It too must inform design more often. 
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1.  Introduction 

People get faster and make less noticeable errors as they repeatedly perform the same 
task.  This is what most mean when they refer to learning,  More formally, here we 
adopt Kimble’s (1961) description of learning as the relatively permanent change in 
response potentiality that takes place as a result of extended practice.   

By following a human-centered approach to design, we explicitly acknowledge that we 
are dealing with a population that encompasses users with a range of skills and abilities. 
We know that these skills and abilities will change over time as a result of learning, so 
we should explicitly support the learning process when designing systems.  To do so we 
need to understand how learning takes place, and how it improves performance, 
sometimes dramatically, through practice.  Systems that initially appear slow and 
effortful to use, often become quicker and more usable with practice—learning is 
therefore something that users and designers can exploit to compensate for particular 
design decisions.   
In this chapter we discuss the relationship between learning and skilled behavior, noting 
the sorts of performance improvements that occur over time, and the process that 
underpins these improvements.  The performance improvements can be modeled using 
learning curves.  There are ongoing debates about the curve’s shape with corresponding 
debates about the learning mechanisms and the implications for cognition and the 
underlying cognitive architecture.  There can be a negative impact of practice on 
performance too, and performance can degrade over time through lack of continued 
practice. We describe how this relationship can be modeled using retention curves, 
before going on to consider the implications of learning and retention for system 
design. 

2.  Learning and Skilled Behavior 

Performance changes with practice, typically getting faster, less effortful, and 
exhibiting fewer noticeable errors.  These changes apply to most tasks that people carry 
out, including the use of computer-based systems. As users perform tasks, they acquire 
new information and skills and, through practice, improve the strength of their 
memories.  More frequent retrieval of information or learnt skills may lead to the 
improvement of memory strength too: retrieving a password is faster and more robust 
after 2 attempts than 1, and after 100 attempts than 99 (all else being equal), although 
the increase in performance diminishes with successive attempts.  

Human performance can be described using Neisser’s (1976) Perceive-Decide-Act 
cycle and similar frameworks (e.g., Coram, 2002; Newell, 1990).  People perceive the 
current situation, which leads them to make decisions about which actions to take, and 
then perceive the updated situation, and so on.  Elements in the task environment are 
initially perceived individually, but related elements become grouped together with 
repeated exposure.  Perception of the situation hence becomes more holistic with 
practice, and recognition consequently becomes quicker.  People also come to associate 
decisions and responses with these learned patterns. In the same way, users can learn to 



 5 

adjust their behavior to accommodate the idiosyncrasies of a particular interface: where 
it is not immediately obvious which actions can be performed, users typically must 
learn which actions are allowed.  Similarly, users often have some predetermined 
beliefs about where particular objects should be on the screen, and if they do not appear 
where they are expected, their location must be learned.  These predetermined beliefs 
can be called a mental model (Moray, 1999), and represent a theory of how the world is 
structured and works.  If interfaces are appropriately designed, learning can happen 
without causing the user much distress; poorly designed interfaces are usually not 
appreciated because considerable time and effort has to be expended on learning. 
We will present a summary, explanatory theory of how users learn, building on existing 
theories.  Our theory has many implications, including how user's behavior changes 
with learning, what extreme practice looks like, and suggestions for system design.  
While we tailor our discussions towards learning in the use of computer-based systems, 
there are many more texts on psychology and cognitive science that provide more 
general discussions on human learning (e.g., Anderson 1982; 1995; 2004; Lindsay and 
Norman, 1977).   

(1995; , 2004; , 1981; Lindsay & Norman, 1977) 

2.1  Improvements from Learning 

Perhaps the biggest regularity of human behavior in general, and particularly user 
behavior, is changes due to learning, which lead them to get faster at performing a task 
the more they do it.  In most tasks where it has been studied, the relationship between 
the number of trials and performance time follows similar shaped curves.  The range of 
tasks is very wide, covering pushing buttons, reading strange text, doing arithmetic, 
typing, using a computer, generating factory schedules, all the way up to writing books 
(Crossman, 1959; Ericsson, Charness, Feltovich, & Hoffman, 2006; Nerb, Krems, & 
Ritter, 1993; Newell & Rosenbloom, 1981; Ohlsson, 1992; Seibel, 1963).  These 
learning curves also apply when people work together in groups (e.g., Lieberman, 
1984; Wright, 1936).   

There are large improvements initially, although users rarely report satisfaction with 
these improvements.  These improvements follow a monotonically decreasing curve 
over time.  In the Seibel task (1963), participants are shown a pattern of 10 lights and 
have to push buttons corresponding to those lights that are illuminated.  Each point on 
the curve for this task (see Figure 1) represents the average reaction times for doing 
1,000 patterns.  With practice behavior improves, but by a reducing amount.  Over a 
wide variety of tasks and out to hundreds of thousands of trials, people continue to get 
get faster (e.g., Crossman, 1959; Seibel, 1963).  

With such large time scales it becomes difficult to see the incremental improvements in 
performance time.  Using logarithmic axes (see Figure 1 (b)), makes it easier to 
perceive the incremental changes.  Typically, on these log-log plots, learning curves 
more or less follow a straight line.   
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 (a)  (b)  
 
Figure 1.  Time to perform a simple task (pushing a combination of buttons) (a) on a 
linear plot, and (b) on a log-log plot. The solid line on each plot shows a power law fit 
to the data. (Adapted from Seibel, 1963, and previously used in Ritter and Schooler, 
2001). 
The mathematical representation of the learning curve is currently disputed. While most 
learning curves generally follow a straight line in log-log plots, there are some 
systematic discrepancies.  Some researchers believe that the learning curve represents 
an exponential function, while others think that it is a power equation (thus, called the 
power law of learning) of the following form: 

Time of a trial = Constant1 + Constant2 * e^(Number of trials + PP)  Equation (1) 
 

Time of a trial = Constant1 + Constant2 * (Number of trial + PP)^- α Equation (2) 
[Note to typesetter: rewrite these equations using an equation tool] 

 
Constant1 is the minimum time based on the machinery or external environment. It is 
sometimes omitted because it makes the regression harder to compute. It can be 
computed from equations describing the world or by using physical equipment.  For 
example, you might measure how long it takes a ball to fall to the ground with a camera 
if the task involved catching a falling ball, or you might record how fast an interface 
can accept keystrokes when driven by a computer program.  Constant2 is the time that 
decreases with practice; it is always used.  

PP is previous practice on the task. PP is either estimated, measured directly, or 
ignored.  It is usually ignored because the task is unique enough to the learner.  In other 
cases, such as taking up a familiar task, the equation does not fit as well if it is omitted.  
α is typically in the range 0.1-0.5 (reviewed in Newell, 1990, Ch. 1; also see Anderson, 
1995, Ch. 6, and Heathcote et al., 2000 for example values). α is usually found by 
plotting the data using log-log axes, and fitting a straight line using a linear equation 
(with a known closed form solution) to the log of the trials and the log of the time.  The 
more accurate, but more computationally expensive approach, is to fit the power law 
equation, including the appropriate constants, using an iterative algorithm.   

Being able to mathematically predict learning is important for several reasons.  For 
science, it helps summarize learning, and comparing the constants (Constant1, 
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Constant2) provides a useful way of characterizing tasks.  It also has practical 
applications.  In engineering, design, and manufacturing, it can be used to predict how 
fast users will become with practice, and hence can be used to predict factory output 
and profitability (e.g., Lieberman, 1984). 

An alternative interpretation of the way improvements occur through learning suggests 
that the match to a power law is an artifact of averaging the data from multiple people 
and multiple series.  The curve is therefore best described as an exponential when the 
data is examined in its purest form (Heathcote, Brown, & Mewhort, 2000).  Both 
interpretations have basically the same implications for users with limited lifetimes and 
physical equipment.  (They have, however, different implications for the details of 
learning and its relation to the mechanisms of cognition and knowledge.) 
In addition to reducing performance time, several other aspects of behavior improve 
with practice too (Rabbit & Banerji, 1989).  The number of noticeable errors decreases, 
usually because people detect and correct the errors before their consequences become 
apparent to casual observers.  The variance in task time also decreases (Crossman, 
1959; Rabbit & Banerji, 1989).  Some believe that this decrease in variability is the 
greatest contributor to improvements in speed, because the minimum time to perform a 
task generally remains unchanged with practice. There are notable exceptions, however, 
such as those tasks that cannot be completed by novices.  
There appear to be two instances where learning cannot get any faster.  Users cannot 
get faster when the machinery they are working with cannot keep up with them.  This 
was first noted when cigar rollers improved up to a point and then stopped.  It was 
found that the users were rolling faster than the machine could pass them materials 
(Crossman, 1959).  This constraint is represented by Constant1 in the equations above.  

The second instance is when they change strategies.  As a user adopts a new strategy, 
they often experience a slowdown, moving back on the practice curve for that strategy.  
With further practice, performance on this curve with a lower intercept improves, 
usually to be much better than the previous strategy (Delaney, Reder, Staszewski, & 
Ritter, 1998) (see Figure 2).   
If your system allows multiple strategies, you should consider supporting user 
transitions between them.  In text editors, for example, there are several ways to find a 
target string, including scrolling line-by-line, scrolling by paragraph, and searching.  In 
one study (Card, Moran, & Newell, 1983), most users employed a sub-optimal strategy 
(scrolling line-by-line) rather than searching; experts typically use searching, which can 
be 100 times faster than scrolling.   
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Figure 2.  The learning curve for a series of better strategies, showing the initial slow 
down and then savings due to switching strategies. (Diagram by Ritter) 

2.2  Theories of Learning 

Theories that describe the general process of learning have been developed in several 
areas, including behavioral psychology (Fitts, 1964), cognitive psychology (Anderson, 
1982), and cognitive engineering (Rasmussen, 1983).  These theories all propose that 
learning occurs in a number of stages. We will focus our discussion mostly on 
Rasmussen’s approach (see Figure 3), whilst noting the parallels with the theories of 
both Fitts and Anderson. 

2.2.1  Stage 1: Declarative knowledge acquisition 
The learner first acquires declarative knowledge about the domain.  Problem solving is 
difficult at this stage. The domain concepts may not always appear connected to each 
other. The learning might be considered as learning how to learn more about the task.  
What is learned at this point, such as the initial problem solving state and the actions 
(physical and mental) available for problem solving, may not be enough to complete 
the task.  Problem solving, when it is possible, is effortful, and not always correct.  The 
user might not have much confidence in their performance.  Rasmussen describes 
behavior at this level as knowledge-based; Anderson calls this the cognitive stage. 
When learners are at this first stage, behavior occurs at the most fundamental level. 
There are no direct rules to inform the user what to do next, so they usually have to 
work from first principles, using strategies such as trial and error. Expert users can find 
themselves at this level in emergencies or novel situations, when deliberate thought and 
reasoning about the state of the situation or system are required, based on the user's 
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knowledge (i.e., mental model) of the system.  Getting your car out of a deep rut, or 
navigating in an unfamiliar town are examples from driving.  In computer systems, 
installing software that does not want to install, and changing UNIX permissions on 
shared files would be other examples. 

 
 
Figure 3.  A graphical representation of Rasmussen’s theory of knowledge levels 
(Redrawn from Rasmussen, 1983). 

2.2.2  Stage 2: Proceduralization 
With learning and practice, the user progresses to Rasmussen’s rule-based behavior 
(what Anderson calls the associative stage).  In this stage the learner can solve 
problems more routinely and with less effort by following a sequence of steps, or 
procedure. The declarative knowledge has been compiled into procedures that are 
relevant to the task domain and can be performed directly.  Users may often be able to 
recognize what needs to be done and apply the appropriate procedure.  For users of 
complex systems, behavior at this level is a consciously controlled activity and is based 
on familiar rules, either dictated or acquired. Lane changing in a car would be an 
example, as would docking a ship in an infrequently visited port.  Use of office 
application software similarly often requires rule-based behavior to insert a figure into a 
document, or format a paragraph.   

2.2.3  Stage 3: Skill tuning 
The final stage, where the knowledge that is applied is refined gives rise to skill-based 
behavior (Rasmussen); Anderson calls this the autonomous stage. At this point users 
still get faster at the task, but the improvements get diminishingly smaller.  New 
declarative information is rarely learned, but small adjustments to rule priorities 
happen.  At this point users are generally considered to be experts.  Behavior is much 
more automatic, and occurs when users perform routine functions in their normal 
operating environment.  Much of their behavior is no longer consciously controlled, 
and hence cannot be verbalized because the behavior is unavailable to conscious 
thought.  Users perform the task faster and, because little or no conscious control is 
required, this frees up attentional resources that can be allocated to other tasks. Simple 
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lane following by an experienced motorist would be an example.  Pressing an on button 
for a computer or deleting text in a word processor might be examples in HCI.  

2.2.4  Moving between the stages 
The improvements in performance time do not appear to delineate the stages of learning 
noted above, except in cases where individual data are studied and strategies are known 
to take different times (e.g., Delaney, Reder, Staszewski, & Ritter, 1998).  This may be 
because the first stage of learning, where performance might be quite difficult, has to be 
nearly complete before the task can even be performed.  There are hints of this in 
Figure 1 (b), where the initial slope is perhaps more shallow than would be expected.  
In complex tasks, the transition of rule learning and rule tuning within tasks might lead 
to steady improvement, and be masked by the large number of rules and sub-tasks.  
Looking at individual users working on well measured tasks may allow stages to be 
seen.  When this has been done, strategy changes can be identified (Delaney, Reder, 
Staszewski, & Ritter, 1998).   

2.2.4  The stages in practice 
These three stages of learning have been noticed in several areas of formal reasoning, 
including physics problem solving, where the link between problem solving and 
learning has been studied (Larkin, 1981; Larkin, McDermott, Simon, & Simon, 1980a, 
1980b).  Formal reasoning is problem solving with known goals (like solve for x), using 
a closed set of equations or rules that can transform representations (like adding 2 to 
each side of an equation).  Examples include proofs in geometry and solving algebra 
problems. 
In these types of problems, the problem solvers (and computer models) start with 
domain knowledge and the goals they are trying to achieve.  Once novices have learned 
declarative knowledge, they can then work backward from the goal.  In the case of 
physics problem solving, the task is to derive a value of a variable (like final speed), 
given some known variables (like mass, initial speed, and force), and some equations 
(like Force = Mass × acceleration).  Novices tend to work back from the quantity they 
are trying to find (final speed), chaining inference rules together until they find known 
variables.  If they need to compute the final speed, they look for an equation that 
computes final speed. Then they look for more equations to find the variables in the 
first equation, until they bottom out with known variables. This is known as backward 
chaining, or bottom-up reasoning.  After each successful application, a new operation is 
learned that supports applying that formula to find a variable.  After enough learning, 
experts start with the unknowns, find or recall equations that apply, and work towards 
the goal in a forward-chaining or top-down way.   
Similar learning strategies will be seen in computer repair and troubleshooting, 
software usage, and other domains where formal reasoning can be applied.  Better 
interfaces will support the novice by providing the domain knowledge needed to learn 
the inferences, and will support novices and experts by providing state information to 
reason from.   

Implicit learning can occur when the user is working at the skill-based level, with 
knowledge eventually being derived at the knowledge-based level through reflection on 
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one's own behavior.  This type of learning, which often leads to, or arises from strategy 
changes, is an active area of research in psychology (e.g. French & Cleeremans, 2002).   

Whichever way the user learns, some key phenomena persist:   
• The ability to recognize correct / incorrect items comes before the ability to 

generate correct items. 
• Knowledge is not acquired in an all-or-nothing way. Novices go through a stage 

of fragile knowledge, where sometimes the correct knowledge is used, and 
sometimes not.  

• Experts acquire a rich repertoire of representations of their knowledge. Experts 
not only know more than novices, their knowledge is much better organized and 
more readily available.  

2.3  Alternative Views on Learning 

There are several other ways of describing learning.  One common way is to distinguish 
between declarative and procedural types of learning.  Another common way is as 
implicit and explicit.  The distinctions between these classifications is still subject to 
debate, but they represent useful and interesting differences about users that can inform 
system design.   
Declarative learning is learning facts (declarations), such as "the power button is on the 
keyboard", and "the computer manager's office is 004A".  There are two types of 
declarative memories: recognition and recall.  Recognition memories are easier to build 
than recall memories.  That is why multiple choice tests seem easier—you just have to 
recognize the answer.   

Procedural learning is learning acts, or how to carry out procedures.  Typing, using an 
interface, and playing a computer game are all examples of this.  Procedural memories 
are more complex than declarative memories in that they generally support the skill 
being performed in a wide variety of contexts, which thus represents more knowledge.  
These memories are formed after the declarative representations are available to create 
them. 

These two types of learning are characterized by different regularities.  Declarative 
learning can, by definition, be directly described and reported; procedural memories 
cannot (Ericsson & Simon, 1993).  You cannot directly describe the procedural 
knowledge you use to ride a bike, although you can accurately report the declarative 
knowledge you used to generate the procedures (like keep your weight balanced), and 
what is in your working memory as you perform the task (there is a parked car ahead).  
You can also watch yourself do a task and attempt to describe what you were paying 
attention to as you did it.  What you think you were paying attention to, however, 
depends on your mental model of the task and how demanding that task is: this 
approach is called introspection.   

There are fundamental problems with introspecting in this way.  While introspection 
can lead to useful and helpful insights, it does not lead to complete and valid theories of 
human thinking (Ericsson & Simon, 1993). Mainstream psychology has rejected 
introspection as an accurate measure of how people think because it is subject to many 
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biases and does not have access to most mental processes, although one may find 
introspection a useful inspiration for ideas that can be later validated by other 
approaches.  
The problems with introspection can be illustrated by a study that looked at learning 
key bindings in a text editor.  When key bindings in the editor were changed on the 
second day of the study, for the first hour or two the users felt much, much slower.  
They were slower than they were at the end of the first day, but still faster than when 
they started.  They regained their skill level by the end of the second day (Singley & 
Anderson, 1989).  This study illustrates three important things about users.  The first is 
that they are always learning.  The second is that introspection often leads to incorrect 
conclusions: they rather disliked the new interface, but adapted more quickly than they 
thought they did.  The third is that the users were able to transfer or relearn all of what 
they had learned from the old interface to the new interface, at least as measured by 
task times.  Only the key bindings changed; the underlying approach and the command 
structures did not, so the users were still able to apply most of what they had learned.  
Another similar example found that users preferred mice over light pens, even though 
the latter were faster to use (Charness, Holley, Feddon, & Jastrzembski, 2004).   
In the implicit/explicit distinction, implicit learning seems to be automatic, is based on 
practice, is not improved by reflection, and produces knowledge that cannot be 
verbalized.  This bears some similarity to the rule tuning stage.  If the rules are created 
based on a simple theory of the domain, but a more complex theory of the domain 
exists, then additional learning can occur. 

Explicit learning proceeds with full consciousness in a hypothesis testing way.  It 
produces knowledge that can be verbalized.   

These distinctions become important when teaching users how to use an interface.  
Some information is presented to them as declarative knowledge to be learned (where 
things are, who other users are, and what the objects are), and some is presented as 
procedural skills, such as how to do a task. If the declarative information is not 
available, the learning will be implicit.   
Learning can also be massed or distributed.  Massed learning occurs at a single time, 
for example, cramming for a test.  Distributed learning occurs with breaks in time 
between the learning episodes.  Figure 4 shows how much better distributed learning 
can be for the same amount of practice.  This figure is based on the ACT-R declarative 
memory equations.  Distributed learning takes less total time (sometimes 1/3 of the 
time), and the retention is better, sometimes 50% better.  Distributed learning also 
allows more time for learning and may lead more time spent learning.  Anything you 
can do to help your users learn in a distributed fashion will facilitate their retention.  
Some interfaces now put up hints which appear to be a way to support distributed 
learning.   
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Figure 4.  Massed vs. distributed practice in relation to time to learn a list. Given 
exponential decay, which is often assumed for memory, the solid line shows a given 
amount of practice as one block, and the dashed line shows the same amount spread out 
over a longer period.  The distributed practice has higher activation after the third 
practice, and will for the remainder of the curve.   
 

Finally, we should note again that learning is rarely complete.  It is easy to think that if 
you have learnt to operate a system your learning about that system is complete. This 
need not be so, many users can sometimes perform very competently with very little 
knowledge.  Other complex systems, such as operating systems, some computer 
applications, and vehicles of all kinds are complex enough, that once competent, users 
can continue to learn new ways to use them and new components for years.   

2.4  Skilled Behavior, Users in Complex Environments 

Human performance is often a complex mixture of behavior at different levels.  In most 
cases, routine users will exhibit open-loop behavior moving seamlessly between the 
rule-based and skilled levels.  That is, they will be able to perform most tasks in a 
routine way using existing, well-used knowledge without checking all of their steps.  
They will not close the loop by checking that things worked correctly because in most 
cases they no longer need to.  If they do make errors, they will be able to recognize and 
correct them quickly, often before any adverse consequences occur.  They will continue 
to get faster with practice, but the improvement will be minor.  These skills will be 
easier to compose with other tasks.  There will also be some closed-loop behaviors for 
tasks that are less well practiced, and on these tasks users will be more careful and 
check their work.   
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Aircraft pilots, for example, often operate at all three levels. Some aspects of their 
behavior are automatic, for others they refer to rules and procedures, whilst for others, 
particularly in emergencies, they reason on the basis of their knowledge about the plane 
and learn.  For most emergencies, they will use the quick reference handbook (QRH), 
which provides them with compiled knowledge in the form of checklists.  In unusual 
emergencies, however, which are not documented in the QRH, they have to reason 
from first principles.  
Rasmussen (1983) argues that good design needs to support all three levels of behavior, 
not just one.  We can also note a social human factor here: if there are multiple team 
members, they may operate at different levels at the same time due to differences in 
experience. This may give rise to conflict or consensus, depending on how these 
differences are resolved.  In an emergency situation in an aircraft, for example, the 
more experienced pilot (the Captain) may be working at one level of reasoning, while 
the more junior pilot (the First Officer) may be using a different level that may not be 
appropriate to the unusual situation (or vice versa). Crew Resource Management 
(Wiener, Kranki, & Helmreich, 1993) is an approach to reduce this problem.   

The SwissAir crash at Halifax, Novia Scotia in 1998 illustrates the point about pilots 
operating at different levels (e.g., see Carley, 1999, January 21; Dekker, 2005).  After a 
burning smell was detected, there were reports of smoke in the cockpit. The first 
officer, who was flying the aircraft, suggested that they should immediately start 
jettisoning fuel to make the aircraft light enough to descend and land at the earliest 
opportunity. This instinctive behaviour is typical of the Skill-Based level. The captain, 
however, decided that they should first follow the predefined procedures for dealing 
with smoke and fire. He was reasoning at the rule-based level. The decision about 
dumping fuel was delayed. Meanwhile the fire continued to develop, and the aircraft 
became uncontrollable, and eventually crashed into the sea, killing all 229 people on 
board.  . 

2.5  Expertise and Experts 

With extended practice users become experts at their task.  Generally, to become world 
class, it takes about 10 years of practice as well as some deliberate reflection and 
declarative learning, either from extensive self-tutoring or a coach (Ericsson, 1996; 
Hayes, 1981, ch. 10; Schneider, 1985; Simonton, 1996).  There are exceptions, but 
most authors argue that these are rare or nonexistent.  Less time is required for local or 
national prominence.  And deliberate practice is a usual and necessary, but not 
sufficient condition for expertise to develop (Ericsson, 1996; Hoffman, Shadbolt, 
Burton, & Klein, 1995).   

Deliberate, intensive practice with a tutoring system can provide an usually large 
amount of time on the critical aspects of a task, where field users have to spend 
additional time to see the critical aspects, learning can be greatly accelerated.  For 
example, the Sherlock tutor (Lesgold, 2001) abstracts the physical movements to learn 
a diagnostic reasoning task.  Students using the tutor for approximately 25 hours learn 
as much as others learn after 4 years of practice in the field.  Learners in the field have 
other tasks, but also the steps in the diagnostic sequence can take hours to perform.   
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There are some theories that suggest that with practice the user gains more than just 
speed in the task.  They appear, in some tasks and in some studies to have greater 
memory and more attention that they can pay to the task (Ericsson & Kintsch, 1995).  
In nearly all cases they have more accurate perception for and of the task details.  In all 
cases, they have more knowledge and better anticipation of what will happen in the 
task.   

2.6  Transfer 

One of the important issues in learning is transfer of learning.  After a skill has been 
learned, the goal is often to reuse the knowledge or apply it to a new situation.  If no 
transfer occurred, every situation would be a new situation; if transfer was perfect, few 
situations would be novel.  There are both positive and negative examples of transfer: 
in some cases transfer does not appear to happen very effectively; in other cases, it can 
be quite effective.   
A telling study on transfer was done by Gick and Holyoak (1980) based on work by 
Duncker (1945), where, before solving a problem, subjects read about an analogous 
problem.  The story (analogous problem) was about how a king wished to invade a 
town, but his army was too big to come through a single gate in the town, so he split his 
troops into smaller parties and entered the town through several gates.  Subjects then 
read about the use of rays to attack cancer: the problem was that the beam of rays was 
too intense to be directed at the cancer cells without seriously damaging the 
surrounding tissue. A surprising number did not think to use multiple beams of rays, 
which is what the transfer of knowledge would suggest.  This lack of obvious (to the 
experimenter) transfer effect has been repeated many times. Thus, users do not always 
transfer useful information unless the information is very well practiced, the transfer is 
very straightforward, and they have time to think.   
A counter example, however, is provided by the previously noted study on the use of 
perverse Emacs (Singley & Anderson, 1989).  They found that transfer can occur, but 
users do not always see it, and they do not like it when transfer leads to small mistakes 
(as would have happened often in the first hour for the users of perverse Emacs).  Thus, 
changing key bindings is likely to lead to frustration, but might not hurt users in the 
long run because the deeper knowledge would transfer. 
When complex concepts and tasks need to be learned, they may be introduced using 
simple analogies: the way muscle fibers work, for example, can be likened to the way 
that a rowing crew operates (e.g., Spiro, Feltovich, Coulson, & Anderson, 1989). The 
idea is that learning can be transferred between the simpler concept or task, and the 
complex concept or task. Whilst this can be a useful approach initially, the simple 
analogies can lead to misconceptions if they are inappropriately applied to situations 
where they do not properly reflect the real situation. To overcome these limitations, 
multiple analogies need to be used, an approach that is advocated by cognitive 
flexibility theory (e.g., see Feltovich, Spiro, & Coulson, 1993). So for the muscle fiber 
example, you also have to introduce analogies that overcome the limitations of the 
other analogies, and end up with a set of five analogies that together help to capture the 
full complexity of how muscle fibers really work.   
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There are tools available to measure potential transfer.  One example is GOMS (Bovair, 
Kieras, & Polson, 1990; Kieras, 1998), a simple language to express how to do a task.  
Each instruction in the language, such as how to push a button, takes about 17-30 s to 
learn,) while declarative pieces of knowledge take about 6-10 s.  Thus, the amount of 
differences between how to do two tasks indicates how much knowledge can be 
transferred and how much must be learned.  Analyses of popular operating systems 
suggest that there are real differences between them, with one being a subset of the 
other, and one thus being easier to learn (Kieras, 1998).   

3.  Retention 

Pilots have to go back to training school on a flight simulator every several months, and 
they have to hand fly at regular intervals to maintain their accreditation to fly particular 
types of aircraft. Many professionals are in this situation.  In this section, we discuss 
this maintenance, or retention of knowledge and skills.  Schmidt and Bjork (1992) 
argue that learning is an imperfect indicator of later performance, and that learning and 
retention, therefore, should be considered together.  It is therefore important to 
understand how acquired knowledge and skills are retained and should be maintained in 
the longer term. 

3.1  The Process of Retention 

Earlier, we discussed the process of learning—there is a consensus understanding of 
how learning occurs in three different stages—which is supported theoretically by the 
ACT-R cognitive architecture.  Based on this theoretical foundation, we can describe 
how forgetting and retention might vary reliably across those corresponding stages of 
learning.  Figure 5 provides a summary of learning and retention accounts.   
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Figure 5.  A theory of skill retention, showing the three stages of learning and 
forgetting.  Rasmussen called these stages knowledge-based, rule-based, and skill-
based.  Fitts called these stages cognitive, associative, and autonomous.   
 
The First Stage: Declarative.  For this first stage of learning and forgetting, knowledge 
in declarative memory degrades with lack of use, perhaps catastrophically as indicated 
by X’s in Figure 5, leading to the inability to perform the task.  In this stage, learning 
and forgetting are accounted for by the activation mechanism for declarative knowledge 
in ACT-R: with lack of use, the strength of declarative memory items declines.  
Decreased memory strength leads to increased response times and decreased retention 
and performance accuracy.   

The Second Stage: Associative.  In the second stage of learning, task knowledge is 
represented using a mix of declarative and procedural memory.  With lack of use, the 
declarative knowledge is forgotten, leading to mistakes and missed steps.  Procedural 
memory, on the other hand, is basically immune to decay.  The slope of the forgetting 
curve in this stage could vary by subtask because it would vary in their knowledge mix, 
and different mixes would decay at different rates.  In the first two stages, catastrophic 
memory failure can occur because the declarative knowledge is not fully activated.  
This finding suggests that in this mixed stage training is necessary to keep the 
declarative knowledge active and also to support further proceduralization because the 
activation of declarative memory is required to generate procedural rules.   

The Third Stage: Procedural.  In the third stage of learning, task knowledge is available 
in both declarative and procedural forms, but procedural knowledge predominantly 
drives performance.  Practice will compile declarative knowledge into procedural 
knowledge.  We describe this type of task knowledge as a proceduralized skill.  With 
lack of use, declarative knowledge may degrade.  Nevertheless, the learner can still 
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perform the task if all the knowledge is proceduralized and thus not forgotten with time, 
and performing the task does not require new declarative inputs.   

4.  Conclusion: Implications for System Design 

4.1  Learning and Design 

The theories and results noted here have several implications for system design.  It is 
important to consider the different levels of behavior when designing systems.  You 
need to support users learning the basic skills at the knowledge level and as they 
progress to rule-based and skill-based behavior, which are both more efficient. The 
support needs to include the provision of appropriate information that will help them 
operate on the rule-based and skill-based levels.   

All users will learn and hence get faster at doing a task with repeated practice.  This is 
an important way that users fit themselves to a task, covering up errors in design or 
compensating for trade-offs made in interface design that do not favor the user.  
Interfaces that are initially too slow may become faster, but will require training (to 
learn the task) and practice (to get faster).  These times can be roughly predicted by 
comparison with other tasks or after several initial trials to get the slope of the 
improvement.  There are theories that predict this, based on a simple task analysis 
(Kieras & Bovair, 1986) where a step (rule) takes about 30 s to learn. Work continues 
on more complete theories both from a design perspective (Christou, Ritter, & Jacob, 
2009) and a cognitive architecture perspective (Anderson, 2007).   

Users must have some declarative information about a task before they can perform it. 
This means that interfaces and their associated system, including manuals, online help, 
web sites, and other users, should provide new users with enough information to 
perform the task, or at least to start to explore the environment.   

Both the procedural and declarative memory usage depends on how they are 
represented.  If the user has a more general representation and declarative knowledge 
associated with it, the procedural knowledge can transfer to new problems more easily.  
Interfaces and systems (including instructional materials) that support more general 
representations and more task-oriented representations (vs. tool specific 
representations) will allow users to transfer their knowledge both in and out of the 
interface more readily. 
The learning curve that can be created by observing learners can provide insights to 
system design directly.  The start of the curve shows how difficult the interface is to 
novices.  This amount of time might be seen to be too high, if it is, or at an acceptable 
level.  Figure 6 (a) shows a relatively shallow curve that shows that novices are not so 
different in performance than experts.  Figure 6 (b) shows a curve where novices would 
be less happy, but which might be appropriate for a game.  The slope of the curve can 
also provide insights.  If the curve is very steep, and the system will be often used, the 
initial task times might not be an issue.  If the interface is used only a few times, then 
the slope needs to get the user’s task time to an acceptable level more quickly.  It can be 
the case that 150 s is an acceptable time, or it can be that 50 s is not and even the well 
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learned portion of the curve is not yet fast enough—it will depend on the context.  (For 
an example of a task with thresholds, see Bryan & Harter, 1897.) 

 
(a) A relative shallow learning curve. 

 
(b)  A relatively steep learning curve.  
 
Figure 6.  Two learning curves with approximately the same final speed.  (a) shows a 
shallow learning curve and (b) a steeper and longer curve.  A relatively shallow curve 
may be more appropriate for interfaces not used often, while a relatively steep curve 
may be more appropriate for interfaces used by experts.   
 
Some users like to learn.  This is probably most often seen in games, which have their 
explicit goal to teach the user some procedural skill (like driving a racing car), or some 
declarative knowledge, like the way around a dungeon.  Many other users prefer not to 
learn, but will if the task is important enough.  This is likely related to a trait called 
need for cognition (Cacioppo & Petty, 1982), which notes that some people like to 
think and learn more than others.   
Systems that allow users to recognize actions they want to do (e.g., by using menus) 
will be easier initially to use than those that require users to recall keystroke based 
commands.  There is a tradeoff, however, when the novices become experts.  The 
experts will be able to recall the keystrokes or command names and will not wish to 
wade through the choices.  For example, Linux experts like to use keystrokes in the 
command shell, while novices on Windows prefer a graphical user interface.   
Systems that encourage users to reflect on how to perform the task may lead to different 
types of learning.  Where the learning is incidental and not tied to educational intent or 
systems, this may not matter.  On the other hand, tutoring systems should be careful 
that what users learn is what is intended.  For example, the interface should not 
encourage users to just try key presses or button clicks to see what happens, which can 
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lead to implicit learning that is tied to the representation of the interface and not to the 
domain. 

4.2  Retention and System Design 

In various systems (or interfaces), the process of learning occurs as human users 
interact with those systems.  Wherever learning is considered to be important, retention 
should be also taken into consideration.  For example, training systems is an important 
domain in which improving the user’s performance and skill retention are the goal of 
the system.   

We can analyze a training system in terms of the aforementioned three stages of 
learning and retention.  This approach provides a way to evaluate the effectiveness of 
the training system—a cognitively engineered training system can optimize the 
scheduling of necessary training (e.g., Atkinson, 1972; Pavlik, 2007) by helping the 
trainee to achieve long-term retention.  We present potential principles for a cognitively 
engineered training system. 

When it comes to the first stage of learning and retention, the trainee’s knowledge in 
declarative memory would degrade with lack of use, leading to the inability to perform 
the task.  With lack of use, the strength of declarative memory items declines, following 
an activation equation.  The base-level activation taken from ACT-R, and shown in 
Equation 3 illustrates this relationship for a chunk i.  Bi , the strength of a memory is 
related to β, a constant, n is the number of presentations for a chunk i, tj is the time 
since the jth presentation, and d indicates the decay parameter.  
 

! 
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$ )      Equation 3 

 
In the second stage of learning, training is needed to avoid catastrophic failures in task 
performance resulting from the learner’s inability to retrieve declarative knowledge for 
steps still requiring declarative knowledge elements, either because the task is 
incompletely proceduralized or because declarative inputs vary for the task (e.g., the 
radio frequencies or flight numbers used by pilots as they enter or exit controlled 
airspace).  The higher decay rates associated with declarative memories also suggest 
that achieving more complete expertise entails training not only common but also 
uncommon tasks to the procedural level (e.g., emergency procedures for pilots).   
Furthermore, while the periods of time between retraining sessions can increase with 
practice, catastrophic failures can still occur if completing the task requires declarative 
memory elements (i.e., changing inputs like frequencies, coordinates, or names).  As an 
example, in learning typing skills, this stage would correspond with the learner 
possessing a strong declarative representation of the key locations while also possessing 
some procedural rules regarding the task as retrievals increasingly get combined with 
key presses (in other words the greater association of conditions with actions).   
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The third stage of learning and retention would correspond to the knowledge about how 
to type be fully represented in production rules, and the declarative knowledge would 
not get used any more and would decay.  Infrequently used characters (e.g., # or ^), 
however, might still require declarative retrievals if these characters are insufficiently 
practiced. 
Conversely, less practiced or infrequently used skills, such as responding to unusual 
errors, may exhibit the mixed curve shown in Figure 5.  Consequently, these skills 
require concerted and structured practice to proceduralize.  Unlike the common ASCII 
keys in the typing task, there is no assurance that routine task execution will compile 
and proceduralize the declarative memory elements associated with the task, meaning 
that training is most likely necessary to achieve proceduralization (noted in Figure 5 as 
crossing the dashed grids that represent the stage thresholds).   

4.3  Learning and Higher Order Cognition 

Learning also can be used to help with higher order cognition constructs such as 
attention and situation awareness (SA, consider cite to chapter in handbook).  With 
greater learning people begin to recognize situations and generate responses faster.  
This allows them to allocate spare attentional resources to a complex task or to a 
secondary task.   

Learning has a secondary effect on SA by supporting many of the activities related to 
SA and generally improving SA.  Greater learning means that each step from 
perception to action will be faster and more accurate. Faster processing times mean 
more time is available for monitoring the situation, and less working memory decay 
while performing secondary tasks.  Greater learning means more knowledge is 
available to predict the world and that these predictions will be more accurate.   

4.4 Summary and Further Reading [Editor: put in cross cites] 

Learning of knowledge and skills and subsequent retention of these skills are 
fundamental aspects of users.  There are many known regularities in learning and 
retention.  The ones reviewed here provide a short introduction.  There are more topics 
and factors in learning and retention that are worth understanding, including chunking, 
compilation of knowledge, conscious control, expertise, learning from reflection and 
self-explanation, scaffolding, and learning from errors.  All of these regularities have 
implications for design that are both feasible and powerful.   
 

4.5  Further Outside Readings 

We can recommend the following further readings in learning and retention in addition 
to the cited works.   
 

Anderson, J. R. (1995). Learning and memory. New York, NY: John Wiley and Sons. 
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This book provides an overview multiple theories and sources of data on learning.  
 

Jonassen, D. H., & Grabowski, B. L. (1993). Handbook of individual differences, learning, 
and instruction. Hillsdale, NJ: Erlbaum. 

This book provides chapters discussing the application of learning theory to education 
and explains many related topics.   

 
Reigeluth, C. M. (2007). Order, first step to mastery: An introduction to sequencing in 

instructional design. In F. E. Ritter, J. Nerb, T. M. O'Shea & E. Lehtinen (Eds.), In order 
to learn: How the sequences of topics affect learning (pp. 19-40). New York, NY: Oxford. 

This chapter introduces the ideas of instructional design, and highlights the strengths 
and weaknesses of several commonly used instructional designs.   
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