

LANCASTER
U

Computing
Department

NIVERSITY

Human, Social and
Organisational Influences on the

Software Process

Ian Sommerville and Tom Rodden

Cooperative Systems Engineering Group

Technical Report : CSEG/2/1995

CSEG, Computing Department, Lancaster University, LANCASTER, LA1 4YR, UK.
Phone: +44-524-593041; Fax: +44-524-593608; E-Mail: cseg-info@comp.lancs.ac.uk

3

Human, Social and Organisational Influences
on the Software Process

Ian Sommerville and Tom Rodden,
Computing Dept.,
Lancaster University,
Lancaster LA1 4YR

is@comp.lancs.ac.uk

Abstract

 This paper discusses some human, social and organisational considerations which
affect software processes and the introduction of software process technology. We
discuss how to analyse software processes as human rather than technical processes,
how process improvement through the introduction of process technology may be
limited because of non-technical factors and how processes are influenced by national
and organisational cultures. In each case, we suggest the implications of these human,
social and organisational factors for software process researchers.

1. Introduction

The objective of research into the software process is to develop methods and
techniques for understanding and evaluating processes and providing support for
process activities. By developing better ways of communicating and evaluating
processes, we can propose and support process improvements based on organisational
objectives such as improved software quality, reduced time to delivery of software
products, reduced process costs, etc.

The vast majority of research on the software process and process support has had
a technical focus. Therefore, research in process representation has mostly been
concerned with developing notations for process modelling, with the development of
support environments which are ‘process aware’ to a greater or lesser extent and with
process enactment. For simplicity, we refer to all of this work as ‘software process
technology’. Many researchers believe that the most effective way to improve software
processes is to deploy this technology in automating, as far as possible, parts of the
process.

It is fair to say that there has been a relatively slow diffusion of software process
research into industrial practice. Part of the reason for this is that technology transfer is
always difficult. However, this paper argues that a more fundamental reason for the
lack of acceptance of process support technology might be the mechanistic nature of the
analysis underlying software process technology. Much work in this area uses
computational metaphors (objects, data-flows, etc.) to describe the process and
abstracts human activities into ‘agents’. This mechanistic approach perhaps reached its
zenith in Osterweil’s contention [1] that ‘Software processes are software too’ where he
advocated that process could be represented as programs which could be executed by
automated or human agents.

The software process research community has now moved away from this extreme
position and recognises that software processes are most definitely not programs. They
are executed by people and not computers. People do not behave deterministically.

4

They have a variety of constantly changing goals and objectives and are influenced by a
huge number of subjective factors in their working environments. They are governed
by organisations and cultures which have significant, although sometimes subtle,
effects on processes.

The move away from a mechanistic process is paralleled by a movement within
business and organisational thinking away from strict structures. Much of this
rethinking of organisations has been motivated by growing disaffection with
"Taylorist" thinking which characterised members of an organisation as a "processing
units" within a larger body. More recent initiatives such as Business Process Re-
engineering (BPR) have sought to consider how businesses can be re-organised to
operate in line with more directed business processes. These approaches involve the
identification of a set of processes through which a particular activity is done, with a
view to optimising the arrangement of those processes. These methods are particularly
suited to a world in which the work is already organised into a set of relatively well
defined and stable processes, These can be examined for duplication, redundancy,
overlaps, etc. Most examples of successful BPR are from well established 'paperwork'
operations such as Ford’s invoice processing procedures [2].

However, the extent to which process models can be generalised to domains where
the work is not of this well structured kind is open to question. Much of the work on
engineering projects is of a problem solving kind -at the outset of a project it is not
understood in detail how the project is going to carry through its objectives. How the
work is to be actually realised will often be worked out over the course of the project
itself. These natural uncertainties are often compounded by organisational settings,
budgetary pressures, work overload, skill shortages, etc. For example, even when a
software project is of the kind that has been done many times before it may not be
possible to staff the project with those who are familiar with such work. This rich
relationship between plans and the social setting in which they are carried out is
reflected by Suchman [3] when she says that:

“plans are resources for situated action but do not in any strong sense determine its
course”

The relationship between process models and those who realise them is complex
and a process model may be used in a variety of ways by different members of an
organisation. These different orientations to the plan and the use of the plan as a means
of guiding action are fundamentally social in nature and process modelling needs to
consider the social setting in which models exist.

This paper discusses some human, social and organisational considerations which
affect software processes and the introduction of software process technology.
Although Lehman [4] and Curtis [5] highlighted these as important several years ago,
researchers in software processes technologies have paid relatively little attention to
these problems. Given the scientific background of most people working in this area,
this is understandable as it is less well-defined and much more subjective than other
aspects of software process technology research which may be assessed from a
technical perspective.

We have drawn on work on social and organisational factors which we have
developed in two separate projects. One of these was explicitly concerned with the
studies of the software process as a social process. We observed software processes in
two large organisations developing different types of product. In one case, the product
was a software-controlled mechanical/electrical system; in the other, it was a safety-
critical avionics system.

5

Our other work in this area is considering the human and organisational issues
which affect the dependability of software processes, particularly the requirements
engineering process. We have analysed types of process error which result from
human interaction and are currently proposing guidelines for process improvement to
reduce the probability of errors being introduced into a systems product.

We do not think it useful to comment here on any specific software process
technology. As software engineers, we recognise the value of this research. However,
we are concerned that a lack of awareness of human and organisational issues will
make it impossible to realise the potential benefits of this technology. We believe that
we must develop a better understanding of these ‘soft’ problems if effective software
process improvement is to be achieved. In this paper, we therefore address three
questions which are relevant to the development of such an understanding:

1. What methods might be used to analyse software processes and the rationale for
these processes? We are particularly concerned with understanding these processes
from a human and social perspective.

2. What are the human and social barriers to the successful software process
improvement using software process technology?

3. What organisational and cultural factors might influence the adoption of software
process technology?

These questions are addressed in separate sections of the paper. In each of these
sections, we include a sub-section suggesting the implications for software process
research.

2. Process Analysis

A notable omission in the software process literature is an almost complete lack of
papers which describe existing processes except in very abstract and general ways.
Whether this is due to a lack of process studies or whether such studies have been
carried out but not published we do not know. However, the lack of information on real
processes makes it very difficult to assess whether or not current research on software
process technology can be applied in practical software development projects.

Of course, a number of researchers would claim that it is extremely difficult to
make studies of practical software processes as the available languages for expressing
software process models are still incomplete. It is only when we have a workable
process description language that we can denote and analyse software processes. There
is some validity in this argument. However, we do have here a ‘chicken and egg’
situation. Unless we study processes in detail we cannot derive realistic process
modelling language requirements; unless we have such a language, we cannot study
processes in detail!

In our work, we have taken the point of view that the existing approaches to process
modelling are too mechanistic for describing processes which are dominated by human
activities. In particular, current approaches to process modelling do not allow complex
interactions between process participants to be represented and analysed. If we use
such a process model as a tool for process analysis, we lose this important information.
We therefore turned to the social sciences to discover methods of process analysis
which might be applicable to software process studies.

The approach which we adopted for the studies of the software process was based
on an ethnographic investigation. Ethnography involves an observer spending an

6

extended period of time living in a society or working environment and making detailed
observations of its practices. Subsequent analysis of these observations reveals
information about the structure, organisation and practices which take place in that
environment. The ethnographer is a neutral observer; he or she should take an
unprejudiced view and should not make judgements as to the practices which are
observed.

Ethnography is useful because is concerned with what actually happens rather than
some notional definition of what should happen. Ethnographers have no interest in
classifying activities according to some pre-defined framework. This is important
because the notion that there is a fixed process or procedure for most tasks is an over-
simplification. Although there may be a formal division of responsibilities in an
organisation and an allocation of roles to individuals, the practical reality is that the
actual work done and the way in which it is done is continually re-negotiated at a very
detailed level by the participants themselves.

 We have had previous successful experience in applying an ethnographic approach
to a study of the process of air traffic control [6] and other studies of work in different
situations have revealed subtle but critical process information [3, 7]. As a follow-up to
this work, we carried out ethnographic studies of the software development process in
two application domains and studies of the requirements and specification process in
other organisations.

We discovered that there were three areas where ethnography was valuable in
developing our understanding of the software process. Existing notations for process
models would not allow this process information to be represented. These three areas
were:

1. Explicit identification of ad hoc cooperation. During a software process, we found
that there were a large number of cooperation activities which were unplanned. A
good example of such an activity is expert consultation. The development team
knew who had particular classes of expertise and, when a problem arose, called on
an expert to help with the problem. The consultations were informal and there was
usually no written record of the discussion. We discovered that these informal
activities were critical in the processes which we observed. Without these activities,
the team could not have met its delivery schedule.

2. Identification of individual process interpretations. We found that different
participants in the process had their own individual models of the process and ways
of tackling particular problems. In any domain where there is significant creative
input this is to be expected. However, it does contradict the notion that there should
be a single, accepted process model which should define how the process should be
carried out.

3. Identification of organisational influences on the software process. We found that
the way in which a process was organised reflected organisational priorities rather
than technical needs. For example, in one of our studies, the process was changed
to satisfy a metric which the organisation had decided was an appropriate quality
metric. The engineers involved in this process disagreed with this metric and
believed that it resulted in lower product quality. Curtis et al. [5] discovered similar
organisational influences which, in practical terms, reduced process and product
quality.

We also found that ethnography was a very effective method of discovering
process rationale. The non-judgmental nature of ethnography where we did not try to

7

explain in advance the objective of process activities meant that ethnographers had to
ask why particular activities were carried out. In many cases, this rationale was
invaluable for understanding the process. It was also the case that the rationale for an
activity was often organisational rather than technical. In the example quoted above,
engineers modified their testing process so that their performance as measured by an
organisationally-imposed metric would improve. The process rationale, therefore, was
organisational rather than technical although technical arguments for the metric could be
made. The extent to which organisational motives are made explicit is, of course,
dependent on the culture of the organisation.

We did discover, however, that ethnography was not an efficient way of
discovering the overall process structure. Our previous experience with ethnography
[6] had been successful in discovering the process. This is also true of other studies [7]
[3]. What is notable about these studies, however, is that they considered environments
such as control rooms where the duration of the process was relatively short and
limited in both physical and organisational scope. The software projects which we
studied lasted more than a year and we did not have the opportunity of observing a
complete development from initial specification through to product delivery.

In one of our process studies, the application was concerned with developing a
safety-related system and a very detailed set of procedures (in essence, a process
model) had been defined. In the other case, however, we had no overall view of the
process. We found it impossible to construct such a view from the data collected by the
ethnographer.

Ethnography must therefore be considered as a means of putting flesh on the bones
of a process model produced using more abstract approaches. Examples of ways in
which the information derived from ethnography might be used to augment process
models include:

1. Annotation with process rationale. As far as we are aware, no current approaches to
modelling include explicit facilities to capture such rationale. If rationale for a
model is not available, there are higher risks in changing the process. This is
particularly true when the rationale is derived from organisational rather than
technical requirements. In this case, it may not be obvious to those who have not
been involved in model creation.

2. Identification of stable and variable parts of the process. It is likely that in many
organisations there are relatively stable process fragments (such as reviews) and
other fragments which vary considerably depending on the type of system being
developed and the developers. Identifying this variability is important if automated
support is to be provided as it should, initially at least, be focused on the stable parts
of processes.

3. Communication pathway identification. The formal models of communication
which may be included in process modelling languages (e.g. roles, responsibilities,
etc.) are inadequate to reflect the rich actuality of communication in an organisation.
Models should also reflect these forms of communication as they are often critical
to the success (or otherwise) of a process.

These examples illustrate how the information derived from process observations
may be associated with a process model. However, ethnography is essentially
opportunistic. You can never know in advance what factors in a culture are important.
Therefore, process models should not constrain the types of information which may be
associated with them.

8

2.1 Implications for software process research

The principal implications of our process studies are that approaches to process
modelling must be flexible and must be able to accommodate process variability. When
a process is examined in detail, we believe that there will always be different, equally
valid, interpretations of that process. It should be possible to express this variability in
notations for process description. We are currently exploring the notion of process
viewpoints [8] as a means of expressing this variability.

Improved notations to express cooperation and communication between process
participants are needed. Current approaches to this communication description are
based on relatively simple notions which do not take into account critical factors such as
the status of participants and the context of the communications. Although there is no
way in which implicit communications could be modelled in such a language, we
believe that an improved communication notation would be an important step forward
in improving the completeness of process descriptions.

Ethnographic analysis was very useful for understanding human interactions in the
process and for discovering process subtleties which would not normally be
represented in process models. We recognise, however, that the prolonged
investigations which we carried out are impractical in most cases. We believe, however,
that it is possible to produce a set of observational guidelines which will shorten the
time required for process information collection. This will allow process information to
be collected and used as annotations to process models.

We also feel that there is a need for the publication of significant process
descriptions which could be used as exemplars by the software process community.
The principal exemplar at the moment is the ISPW6/7 example [9] which is an artificial
example covering part of the process. The example is plausible but the process
fragment addressed may be unrepresentative and does not take into account any
organisational influences. The publication of more realistic examples would represent a
more challenging test for work in process representation. Of course, we recognise the
problems this poses as organisations may feel that real process descriptions may be
commercially sensitive information.

Methods and notations for describing process models should evolve from their
essentially computational framework to allow informal information about human and
organisational issues to be associated with them. They should also explicitly highlight
those parts of the process which are likely to change. This does not just mean providing
easy-to-use model editing; the notations for process should explicitly denote stable and
variable process fragments.

We believe that it is particularly important to augment models with structured
descriptions of the rationale for these models. This will this make the models easier to
understand. It will also provide a basis for arguing for process improvements and serve
as a basis for assessing the organisational impacts of these improvements.

2. Process Improvement

We believe that a fundamental objective of software process research should be process
improvement of some kind. These improvements may have the objective of reducing
costs, reducing the time required to complete a product, improving quality, etc. These
improvements may be accomplished by introducing some process support technology
and/or by changing the process (re-engineering it) in some way.

Interestingly, a survey of researchers from the software process community [10]
disagreed with this notion. The survey showed that they did not think that either process

9

measurement or process improvement should be the principal objective of their
research into software process modelling. Rather, process guidance was deemed to be
the priority objective by the majority of researchers which were surveyed.

We are concerned about this allocation of research priorities. Organisations are
interested in process improvement not the abstract intellectual challenges of process
modelling, process analysis or process enactment. Unless the real problems of process
improvement are taken into account, software process research will not have a
significant industrial impact.

Most of the effort in software process improvement has been driven by the SEI’s
Capability Maturity Model [11] and by the adoption of ISO 9000 process quality
standards. Many organisations have modified their processes to reach a certain level of
process maturity [12] or to be compliant with ISO 9000. We are not aware of any
analysis of the human and organisational problems of making these process changes so
we do not feel that we can comment from this perspective on the SEI work. However,
we note that Humphrey, the principal architect of the SEI model, has written about the
importance of respecting professional skills when introducing process improvement
[13].

This drive for improvement is also manifest in a number of methods of
organisational change including Business Process Re-engineering (BPR) [14], and
Total Quality Management (TQM) [15]. These methods share common concepts of
‘process’, and implicit or explicit mechanisms for monitoring ‘process’. However,
they tend to ignore the contingencies, interruptions, and problems which arise as work
is undertaken in practice. This is perhaps most notable in the case of service industries
where interpersonal communication skills are a recognised and prized resource. As
Clements [16] states in his discussion of the use of IT in business process
improvement.

“The required skills are often vital to office operation, but are inherently difficult if
not impossible to formalize and they lack the authoritative status they would enjoy
if associated with higher-ranked more formally qualified personnel.”

Clements argues for the need to allow development methods that allow the people
concerned to bring their experiences to bear in an early and effective manner. Clements
suggests that this is consistent with the traditions of Participative Design [17] and offers
this as a solution for the design of new computer systems. While not fully endorsing
his support of Participative Design particularly within an industrial context we would
agree with Clements that early involvement of participants in the design and
implementation of process improvements is essential.

2.1 Introducing process technology

We are not aware of any studies of the attitudes of end-users to software process
technology. Given the relative immaturity of that technology and its lack of industrial
use, this is not surprising. This section is therefore necessarily based on extrapolation
from related work. There have been several studies concerned with user attitudes to the
introduction of information technology in organisations. There has been some work
done on human and organisational factors and software development environment
design [18] with the problems of introducing groupware into organisations [19] and
with the introduction of workflow systems into organisations [20].

The majority of interesting software processes are group processes so process
support technology must explicitly address the problem of providing group support. In
this respect, process technology is distinct from most CASE tools which are aimed at

10

supporting individual users. Grudin [19]has studied the general problems of
introducing groupware into organisations. Given the nature of process technology, it is
reasonable to assume that all of these problems are applicable. The problems which he
identified are listed below. We have paraphrased Grudin’s expression of these
problems to relate them to software process technology.

1. Disparity of work and benefit People are reluctant to use technology which forces
them to do extra work with no direct benefit. For example, it is recognised that
software processes are dynamic and a requirement of a process support system
might be to record process changes. Unless there is some benefit to engineers in
recording such changes, they are unlikely to do so.

2. Critical mass Unless enough people in an organisation are willing to use process
technology, it may never reach a critical mass of users to be useful. For example, if
a process management system records current process state, this will only be useful
if all members of a team use the system.

3. Disruption of social processes Process technology may not be accepted by
software development teams if it interferes with the complex and subtle social
dynamics of the team. Humans naturally adapt to other team members using
implicit social and organisational knowledge and an awareness of cultural norms.
It will not be possible in the foreseeable future to incorporate such knowledge in
process support technology.

4. Exception handling Most human processes are characterised by flexible exception
handling. The way in which an exception is handled depends on the type of
exception, the context where it occurred, the resources available to the handler, other
responsibilities of the handler, etc. If process support technology cannot support
this flexibility without significant user input to the exception management system,
then it is likely to be rejected by its users.

5. Unobtrusive accessibility Some features of a process support system are likely to
be used frequently, others rarely. If rarely-used features cannot be used without a
significant learning overhead, they will never be used.

6. Difficulty of evaluation We do not, at the moment, have any reliable methods for
evaluating process support technology. Process metrics can, of course, be collected
but relationships between these metrics and support technology are almost
impossible to validate. Thus, generalising and learning from other’s experience of
process technology is very difficult.

7. Non-intuitive requirements It is difficult for software engineers to have strong
intuition about the real requirements for process support. This contrasts with CASE
tools, for example, where the tool developers could easily understand the problems
of the tool users.

8. Acceptance management We do not currently know how to support the
introduction of process technology into an organisation and manage its acceptance
by project teams. As Grudin points out, individual tools are relatively easy to
promote because they do not require 100% acceptance by all potential users before
they are useful. If process technology is rejected by even a small number of end-
users then its usefulness is significantly diminished.

Many of Grudin’s identified problems were also found in a study by Le Quesne
[18] which looked at the introduction of software development environments into

11

several different organisations. He found that social and organisational factors were
more significant than technical factors in determining the successful introduction of the
technology. Users of the technology did not see real benefits (although managers did),
the useability of the system was very important, and it was impossible to evaluate the
systems objectively. Other conclusions of this survey are covered later in this section
where we discuss- the importance of professionalism.

 The general representation of work and the re-engineering of business process have
become closely tied with the properties of information technology. This relationship is
most evident in the case of workflow systems where as Abbot and Sarin [20] state:

"Workflow software provides the infrastructure to design, execute, and manage
business processes on a network"

In outlining a set of different experiences in the use of workflow to support a
number of different processes Abbot and Sarin emphasise the importance of
considering the nature of the process in line with the supporting technology. They
found that simply automating an existing process with no attempt at process
improvement was counter-productive. The problems with the existing process were
exacerbated when end-users had to deal with electronic versions of badly designed
forms.

The way in which workflow systems is installed was found to be a very significant
success factor for that technology. Abbot and Sarin state:

" mundane issues of installation and administration, which arise with any software
product, become more visible and critical.."

In summarising their experience gained from extensive examination of the use of a
range of existing workflow systems a number of significant issues emerged which are
of major importance to process technology. These include:

1. Integrating procedural and non-procedural work Workflow systems give pre-
eminence to procedural representations of work. Procedural representations reflect
the structured aspects of a process. Non-procedural work is of equal importance in
ensuring the process is completed and workflow systems need to combine these in
a flexible manner. Abbot and Sarin suggest that appropriate tools for enactment and
relating workflow models to users offers the best solution and explicitly warn
against trying to add non-procedural work to workflow descriptions.

2. Support for external activities and meetings Meetings played a central role in co-
ordinating most of the workflow processes examined by Abbot and Sarin yet
limited support was provided for meetings in the workflow model or the
supporting technology.

3. Evolutionary process development Processes need to be allowed to develop and to
fit to the social setting in which they are placed. This is particularly true in the case
where the details of how an eventual goal will be achieved are unknown. Existing
examples of workflow systems and software highlight limited support for process
change or evolution.

2.2 Respecting professional skills

Most of the successful reports of business process re-engineering have involved clerical
tasks such as invoice processing. By cutting across hierarchical structures in an

12

organisation, paperwork and the number of people needed to process that paperwork
was significantly reduced. However, it is not clear if a comparable approach can be
applied to processes which are largely based on professional judgement.

Software engineers consider themselves to be professionals. Their work is
specialised and requires significant training and expertise. Like other professional tasks,
software development requires the application of knowledge which is not specific to the
organisation applying that knowledge. In general, professionals feel that they ought to
have some autonomy in planning and scheduling their work and deciding the most
appropriate way to solve problems. They think that they should be trusted to apply their
professional skills without close supervision. Professionals have transferable skills and
are willing to change jobs if they feel that their position is threatened by organisational
change.

The threat to this notion of professionalism was identified by Le Quesne as a
significant reason why the introduction of a software development environment was
resented by its users. They felt that the changes to normal working practice which were
required for the successful use of this system reduced their control over the ordering
and pace of their work. They felt that the process changes and associated technology
were de-skilling and did not recognise the fact that they were responsible professionals.

In our process studies in an aerospace company which had a process improvement
programme in place, we found very similar attitudes. The software engineers felt that
the changes which were imposed were not real improvements but were management
challenges to what they considered to be successful working practice.

In some cases, they felt that the changes were politically motivated. Once such
change was the introduction of an object-oriented development method after the
requirements for a system had been specified using a functionally-oriented approach.
The judgement of the engineers was that the cost of translation from a functional to an
object-oriented model was likely to exceed any benefits from the object-oriented
technology. However, their objections were over-ruled by management which had been
imported from the company’s principal site where the transition to object-oriented
development had already been made.

The major complaint which these engineers had was not the method itself but the
fact that, as professionals, they were not involved in the process of method selection.
The need for involvement is confirmed in Le Quesne’s study which showed that the
only successful use of the software development environment was in an organisation
where the software engineers were participants in the process of defining the
environment requirements.

2.3 Implications for software process research

Using the example of electronic mail, Grudin suggests that successful applications to
support groups are flexible, have a low learning overhead and do not incorporate
notions of role, process and social interaction. He suggests that groupware applications
are more likely to be accepted if they evolve from currently user applications so that a
large learning overhead is not required.

This notion is confirmed by the relatively limited use of large-scale software
development environments. These involve a major transition and change of working
practice. Organisations and individuals prefer incremental change so tools which
support individual tasks and which can be used or not are inherently more acceptable.

As far as software process research is concerned, this poses a major challenge.
There has been a great deal of work carried out in the development of process-centred

13

environments. Examples of such environments include IPSE2.5 [21], Arcadia [22],
MARVEL [23], ALF [24] and OIKOS [25]. Some of the developers of process-
centred environments have suggested that the reason for the limited use of current
SDEs is the lack of process support. By including such support, the attractiveness of
SDEs to customers will be increased. If the analogy between process technology and
groupware is appropriate, this may be an over-optimistic viewpoint.

 Grudin’s observation that successful groupware systems have evolved from
existing systems suggest that an appropriate starting point for developing process
support might be existing CASE tools. This, of course, does not negate existing
research on what process support facilities might be required. However, it does suggest
that researchers with an interest in the practical exploitation of their work should also
consider the integration problems with existing systems.

 As we have discussed, software engineers consider themselves to be
professionals. They consider that a distinguishing aspect of professionalism is that
professionals have some control over their own work activities. They exercise
judgement about the best way to tackle a task and strongly resent organisational
imposition of particular work practices. They are much more likely to accept change if
they participate in the design of that change.

 Of course, organisations may impose a technology but people have an innate
ability to ‘work around’ such impositions and derive alternative working practices
which circumvent the system. As Hirscheim and Newman discuss [26], end-users
who have unwanted technology imposed on them are ingenious in finding plausible
reasons why the technology is inadequate and should be rejected.

 Given that an organisation is willing to involve its engineers in process change
planning, this requires that the process technology used must be adaptable. It should be
presented in end-user terms and it should be easy to understand process models and
descriptions. It should be possible to construct (or at least to adapt) models and support
tools without extensive training.

From the experiences of workflow systems, it is clear that there is a need for
process presentation facilities so that end-users can understand models which have been
developed and can participate in their development. Facilities need to be developed to
link meetings and other external activities into the process. Future systems should
incorporate flexibility in decomposing processes, library and re-use facilities which
allow existing processes to be changed to meet current needs.

3. Organisational and Cultural Factors

All interesting software processes take place within a broader organisation of some
kind which is itself constrained by legal, political and economic considerations. The
interests in the software process range from the very direct interests of the participants
in that process through to the very indirect interests of society in general. This range of
interests is sometimes expressed in what is called a socio-technical pyramid. The direct
involvement with the process and process support increases towards the apex of the
triangle.

14

Engineers

Socio-political environment

Dept. management

Organisation management

Project management

Direct interest in
process support

Indirect interest
in process support

Figure 1 The socio-technical pyramid

Although there some of the process influences may be very indirect, this does not
mean that they are insignificant. As an example of this, in UK industry, there is
increasing pressure on companies to be certified for quality according to ISO standard
9000. This has now reached a stage where quality certification, irrespective of its
relevance in a particular context, is expected of companies. In some cases, it is a
requirement for sub-contractors. They must conform to this pressure in order to remain
in business even when it is unlikely to make a significant difference to their product
quality.

In this section, we consider three levels in this socio-technical pyramid. We firstly
discuss the engineering level and the influence of systems engineering processes on the
software process. We then look at the management level and the potential conflicts
which can arise between technical goals, project management goals and business goals.
Finally, we discuss the more indirect cultural level and the affect that cultural factors
may have on the introduction of organisational change.

3.1 Systems Engineering

The vast majority of research on software processes seems to have considered software
processes in isolation rather than in the context of some broader process framework.
While it is understandable that research should be focused, a danger of such focusing is
that critical considerations which derive from broader considerations are ignored.

In many organisations, software processes are only one of many engineering
processes which are required to produce a product. These organisations have a general
systems engineering process and this constrains other sub-processes which are part of
it. To give a simple example, the systems engineering process may require the
publication of interface specifications early in the process so that concurrent hardware
development can proceed. The time required for tooling for manufacture is such that
any delay in publishing these interfaces will result in high cost penalties and product
delivery slippage.

This means that the software process used must deliver these specifications even if
this results in a less than ideal process. An extended period of prototyping (say) may be
desirable but may be impossible because of the need for early interface definition. Of
course, defining the interface prematurely may cause problems later in the process.
However, the costs of repairing these problems may be significantly less for the
organisation (although they may mean higher software costs) than the costs of later
interface delivery.

15

We were involved in an empirical study of the software process within a company
which produced complex products which included mechanical, electrical, electronic and
software components. The product which incorporated the software was being
developed using a concurrent engineering approach with very tight delivery schedules.
These schedules were very critical for the team concerned as failure to deliver on time
could mean a transfer of future engineering work to another site.

The development process used meant that hardware from other products was
modified and control software developed for this machine. We did not study the whole
development process but examined the process during the development and integration
of the software and hardware. Notable features of the process were:

1. There was no separate software test plan. The whole system was tested using
standard procedures which had been developed for other similar products. The test
sequence was not documented and the tests themselves were chosen by the testers
depending on their knowledge of likely problems and previously identified system
failures.

2. The engineering team met daily to assess problems identified during system testing
to discuss how these problems may have arisen. Responsibilities for fixing the
problems were then allocated. Because of the costs of modifying hardware, the
software development team sometimes had to change their software to work
around a hardware problem.

3. The process relied heavily on the use of experts who had detailed knowledge of
parts of the system and their interfaces.

4. Apart from problem reports, very little documentation was maintained. The
software evolved daily with no configuration management and no attempt to
maintain links between problem reports and software system versions.

The company had, in fact, a detailed software process model which was simply
ignored by the managers of the product development process. Their attitude was that
the software process model may be applicable to software development projects but
was quite inappropriate for product development to a very tight schedule.

In terms of the SEI model [11], this was undoubtedly a chaotic, Level 1 process.
Yet in terms of product development, it was effective and the company concerned is a
very successful multi-national organisation which relies on these types of product for
most of its revenue. Systems engineering considerations meant that the conventional
wisdom of the value of defined software processes simply did not apply.

Of course, this is a special case. We do not claim that this is a typical process and it
is certainly nothing like the software process we observed for another systems product.
However, it was equally true in that situation that the software process was determined
by the systems engineering process. The lesson which we took from this is that to
convert current software process research into practice, we must be very aware of these
broader systems considerations.

3.2 Management and Organisational Goals

The people involved in an organisation generally have a range of different goals. These
goals depend on their responsibilities and status in the organisation, their personal
involvement with the organisation (e.g. they may own shares) and external
circumstances such as family commitments. The goals of different people in an
organisation are often opposing and an important role of management is to reconcile
these opposing goals.

16

These differing goals sometimes arise because members of the organisation have
different views of the organisation. If we take a University as an example, some
professors may consider that the primary purpose of the organisation is teaching, others
may see it as a research institution. University accountants see the organisation as a
business enterprise. There is no single homogeneous view and we believe that this is
true for all non-trivial organisations.

With this in mind, we can distinguish three related classes of goal:

1. Technical goals. These are concerned with the application and development of
professional skills as discussed above.

2. Project management goals. These are concerned with achieving budget and
schedule targets and ensuring the successful completion of projects.

3. Organisational management goals. These are concerned with ensuring the continued
existence and development of the organisation as a whole.

 Because of the pervasiveness of software, software process changes have a very
significant effect in organisations and all of the above goals are influenced by software
process change. At a technical level, the actual software development activities may be
carried out in a different sequence, different methods may be used or new support tools
introduced. At the project management level, managers must assess the costs and
benefits of the change and find a way of introducing that change without adversely
affecting project planning. At the organisational level, software is now so important that
software failures can threaten the existence of the entire organisation.

 Technical, project management and organisational goals do not, of course, all have
the same weight. If an organisation must change in order to satisfy its goals, resources
will be invested in making that change. We see an example of this in the requirement of
a UK defence standard for safety-critical systems. This states that formal specifications
should be produced and the system verified against these specifications. In order to
maintain and develop their defence business, organisations are investing in formal
methods training.

Without such organisational support, the introduction of new technology and
methods is much more difficult to achieve. Formal methods are again a good example
of this. There are sound arguments for the use of formal specifications [27] in software
development. In spite of this, formal methods are rarely used except in the safety-
critical systems domain. Although technical arguments against formal methods are put
forward, we believe that the reasons why they have been rejected are because they fail
to satisfy project management and organisational goals.

Project managers are concerned with completing projects successfully and are
unwilling to take the risk of adopting radically new approaches without organisational
support. If these approaches fail then the project management goals will not be
achieved. Organisations may have business goals such as software quality
improvement. However, they generally don’t care about how this is achieved. It is quite
clear that other approaches to quality improvement are effective and there is therefore
no organisational support for formal methods.

The problem which is faced by new approaches to the software process is that they
are likely to be perceived by engineers as oriented towards management goals as they
guide and control the process. Management, however, may not see things in exactly the
same way. Specialised notations and tools may be perceived by management as a new
technologies which are a risk to their current development methods. Management

17

therefore see these as satisfying technological rather than managerial goals and are
therefore unsympathetic to these changes.

To make an impact, therefore, proposers of software process change must have
organisational support for that change. Organisations must be willing to invest time and
money in promoting process change and provide an adequate training budget for
engineers affected by the change. In one of our studies, it was notable that expensive
CASE tools were unused. The reason for this was that tools were purchased from a
capital budget while training was funded from a different budget. Although there was
money to buy the tools, there was no money to pay for people to learn to use them.

3.3 Cultural Factors

Although they are very difficult to define in an objective way, cultural factors have an
very significant effect indeed on whether or not changes which affect that culture are
likely to be accepted. In the context of software processes, cultural factors influence the
introduction of new processes and the modification and evolution of existing
approaches to software development.

Cultural factors are significant at two different levels:

1. The organisational level where organisations develop their own distinctive culture
which is recognised and (generally) accepted by the people working in these
organisations.

2. The national level where different countries have different cultures. These cultural
influences are less easily recognised by nationals of that country as they pervade all
activities in that country. However, outsiders can often see immediately how
national cultural factors influence the acceptance or otherwise of change.

 At one extreme of organisational culture, there are very rigidly structured,
hierarchical organisations where roles are clearly defined and individuals in these roles
are not expected to overlap significantly with other roles. This culture, in the UK at
least, is most apparent in large manufacturing organisations that have many years
(sometimes more than 100) of engineering experience. The often-criticised ‘waterfall’
model of the software process is alive and well in these organisations and accepted
without a great deal of criticism simply because its structured nature fits with the
organisational culture.

At the other extreme, some organisations pride themselves and deliberately foster a
culture of informality. Job titles may be deliberately vague and flexible allocation of
work is encouraged. We see such a culture in many small companies and but also in
larger companies which were founded as software companies in the 1960s and 1970s.
More informal approaches, such as prototyping, are likely to be promoted in such
cultures and rigid hierarchical models, rejected by them.

An organisational culture manifests itself most strongly in what are sometimes
called ‘high-reliability’ organisations. These are organisations involved in safety-critical
activities such as air traffic control. The importance of safety is pervasive in these
organisations. Individuals in these organisations naturally give priority to safety
irrespective of their role. This culture also pervades the software development process
in these organisations so that there is a natural tendency to develop dependable
processes.

At the national level, there are extreme differences between the cultures in Asia and
the USA and less significant but nevertheless important differences between countries
in Europe. The North America individualism is encouraged, job mobility (and hence
technology transfer) is the norm and change is, in many organisations, seen as

18

welcome and necessary. By contrast, Isoda and Saeki [28] characterise Japanese social
traits as:

1. Groupism. Individuals prefer to not to stand out from a group.

2. Gradualism. Radical change is unwelcome but gradual change is readily accepted.

3. Companyism. People are expected to work with the same company all their life.

4. Social rigidity. Roles and positions in a social hierarchy are well-defined and
accepted.

At a European level, the differences between countries are less marked. Living
within one such culture, it is difficult for us to be objective about this but, from a UK
perspective, Germans have a reputation for thoroughness, French for abstraction,
Italians for design flair, British for improvisation and so on. Of course, these are
examples of cultural stereotyping but they do reflect real differences between the
countries which pervade the educational and training systems. Those involved in
software development will naturally adopt the local cultural traits.

There are very complex interactions between national and organisational cultures. A
process which works in one part of a company may not be successful in another part of
the same company which is based in a different country. These cultural interactions are
increasingly important as software companies become multi-national. Process
engineers in an organisation should be aware of them and sensitive to cultural issues.

In a consideration of computer science education Friedman and Kahn [29] stress
that the linkages between the social on the technical are complex and are manifest in a
variety of ways. In particular, they stress that cultural features are often manifest in
terms of biases or presumptions which are designed into a constructed system. In
particular they outline three forms of bias

• pre-existing social biases: where existing stereotypes and biases are embodied in
the system. For example, the relationship between manager and subordinate may
determine all actions have to be authorised.

• technical biases: where the solution of a technical problem in the construction of a
system outlines a particular system behaviour. Consider for example the use of
search strategies to find the most acceptable recipient of information.

• emergent social biases are manifest in use when social uses change and often
require some reconsideration of the role of the systems in use. For example,
changes in an organisation due to take over or merger can often result in an
organisational culture which suggests that certain skills are significant yet the
supporting computer system appears to devalue these skills.

These different effects work together to determine the effects of a system within a
social setting. In the case of process modelling and evolution the chances of bias of
some kind and the consequential effects are significant given that it seeks to represent
the work people do.

3.4 Implications for software process research

Because of the complexity of organisational and cultural issues, there is no practical
way in which they can be reflected in process support technology. What researchers
must aim for, therefore, is the development of technology which is as culturally neutral

19

as possible. Given that these researchers live within a culture and will have their own
cultural biases, this is a very difficult thing to do.

As process support technology reflects the way in which groups and organisations
work, it is distinct from other CASE tools which embed the process models of how
individuals should use particular design methods. This suggests that developing
process technology products for the international market will be a difficult task.
Developers of such products must examine them carefully for the inclusion of their
own cultural biases. If these are significant, the products may be unacceptable in other
countries and organisations.

Discovering cultural biases in software implies that, firstly, we need to develop
education and training to make engineers aware of these biases and, secondly, that we
need simple ways of analysing process models to detect possible cultural influences.
Providing good process presentation tools and exposing the process description to as
many people as possible is perhaps the most effective way of detecting such problems.
When engineers respond with statements such as ‘That wouldn’t work here’, there may
be cultural reasons for this.

4. Conclusions

Rather than a report of specific software process research, this paper has discussed a
number of social, organisational and cultural issues which must be considered when
introducing software process technology. We believe that addressing these ‘soft’ issues
is critical if process technology is to be successfully used.

We must admit that we have progressed much further in the area of problem
identification than we have in suggesting solutions to these problems. However, from
our research, we believe that developers of process technology should bear the
following points in mind:

1. It is probably impossible to convince all members of an organisation who are
involved in software development that they should follow a single process model.
Professionals will always want (rightly, in our view) to demonstrate their
professionalism and this means that they will have their own views on the software
process.

2. Process descriptions should include facilities for attaching informal information
which may provide critical process information. Support tools should recognise and
present this informal information. It is not possible to decide in advance what entity
types and relations may be required to represent social, human and organisational
issues if, indeed, they can even be represented using such concepts.

3. Process support tools should pay more attention to presenting the process to end-
users and developing method of involving these end-users in the preparation of
process descriptions. It must be possible to leave part of the process ‘undefined’
and left to the judgement of engineers involved in that process. This implies that we
have to take a ‘lightweight’ approach to process description with process details left
to the development team.

4. We need more research into the human and organisational problems which arise
when process technology is introduced into an organisation. The quantitative,
process measurement approach suggested by process improvement models needs
to be supplemented by qualitative studies which focus on the people involved in the
process.

20

5. Acknowledgements

This work was partially funded by the UK Joint Council Initiative in Cognitive Science
and HCI and by the European Commission in the REAIMS project (Project 8649).

6. References

[1] Osterweil, L., “Software Processes are Software Too”. Proc. 9th Int. Conf. on
Software Engineering, 1987. 2-12.

[2] Hammer, M., “Reengineering Work: Don’t Automate, Obliterate”. Harvard
Business Review, 1990. July-August 1990: p. 104-112.

[3] Suchman, L., Plans and Situated Actions. 1987, Cambridge: Cambridge
University Press.

[4] Lehman, M.M. “Process Models, Process Programs, Programming Support”.
in Proc. 9th Int. Conf. on Software Engineering. 1987. Monterey, Ca.

[5] Curtis, B., H. Krasner, and N. and Iscoe, “A Field Study of the Software
Design Process for Large Systems”. Comm. ACM, 1988. 31 (11): p. 1268-87.

[6] Bentley, R., et al. “Ethnographically-informed Systems Design for Air Traffic
Control”. in CSCW’92. 1992. Toronto, Canada.

[7] Heath, C. and P. Luff. “Collaborative Activity and Technological Design: Task
coordination in th London Underground control room”. in ECSCW’91. 1991.
Amsterdam.

[8] Sommerville, I. “Process Viewpoints”. in Proc. 4th European Workshop on
Software Process technology. 1995. Leiden, NL.

[9] Kellner, M., et al. “ISWP-6 Software Process Example”. in Proc. 6th Int.
Software Process Workshop. 1991. Hakodate, Japan.

[10] Longchamp, J., “An Assessment Exercise”, in Software Process Modelling
and Technology, A. Finkelstein, J. Kramer, andB. Nuseibeh, Editors. 1994, Research
Studies Press: Taunton.

[11] Humphrey, W.S., “Characterizing the Software Process”. IEEE Software,
1988. 5(2): p. 73-79.

[12] Humphrey, W., T. Snyder, and R. Willis, “Software Process Improvement at
Hughes Aircraft”. IEEE Software, 1991. 8(4): p. 11-23.

[13] Humphrey, W.S., “Software and the factory paradigm”. IEE/BCS Software
Eng. J., 1991. 6(5): p. 370-6.

[14] Davenport, T., Process Innovation. 1993, London: Ernst and Young.

[15] Feigenbaum, A.V., Total Quality Control, 3rd edition. 1991, New York:
McGraw-Hill.

[16] Clements, A., “Computing at Work: Empowering Action by ‘Low-Level’
Users”. Comm. ACM, 1994. 27(1): p. 52-63.

[17] Greenbaum, J. and M. Kyng, Design at Work: Cooperative Design of
Computer Systems. 1991, Hillsdale, NJ: Lawrence Erlbaum Associates.

21

[18] Le Quesne, P.N., “Individual and Oganisational Factors and the Design of
IPSEs”. Comp. J., 1988. 31(5): p. 391-7.

[19] Grudin, J., “Groupware and Social Dynamics: Eight Challenges for
Developers”. Comm. ACM, 1994. 37(1): p. 92-105.

[20] Abbot, K.R. and S.K. Sarin. “Experiences with workflow management: Issues
for the next generation”. in Proc. CSCW’94. 1994. North Carolina.

[21] Warboys, B., “The IPSE 2.5 project: A Process Model Based Architecture”, in
Software Engineering Environments: Research and Practice, K. Bennett, Editor.
1989, Ellis Horwood: Chichester.

[22] Kadia, R. “Issues Encountered in Building a Flexible Software Development
Environment”. in Proc. 5th ACM Symposium on Software Development
Environments. 1992. Tyson’s Corner, Virginia.

[23] Ben-Shaul, I.Z., G.E. Kaiser, and G.T. Heineman, “An Architecture for Multi-
user Software Development Environments”. Computing Systems, 1993. 6(Spring,
1993): p. 65-103.

[24] Canals, G., et al., “ALF: a Framework for Building Process-Centred Software
Engineering Environments”, in Software Process Modelling and Technology, A.
Finkelstein, J. Kramer, andB. Nuseibeh, Editors. 1994, Research Studies Press:
Taunton, England.

[25] Montangero, C. and V. Ambriola, “OIKOS: Constructing Process-Centred
SDEs”, in Software Process Modelling and Technology, A. Finkelstein, J. Kramer,
andB. Nuseibeh, Editors. 1994, Research Studies Press: Taunton, England.

[26] Hirscheim, R. and M. Newman, “Information Systems and User Resistance:
Theory and Practice”. Comp. J., 1988. 31(5): p. 398-408.

[27] Hall, A., “Seven Myths of Formal Methods”. IEEE Software, 1990. 7 (5): p.
11-20.

[28] Isoda, S. and M. Saeki, “Software Engineering in Asia”. IEEE Software, 1994.
1(5): p. 63-9.

[29] Friedman, B. and P.H. Kahn, “Educating Computer Scientists: Linking the
social and the technical”. Comm. ACM, 1994. 27(1): p. 65-70.

