
‘Good’ Organisational Reasons for ‘Bad’ Software Testing:
An Ethnographic Study of Testing in a Small Software Company

David Martin1, John Rooksby1, Mark Rouncefield1, Ian Sommerville2
1Computing Department, Lancaster University, UK

2School of Computer Science, University of St Andrews, UK
[d.b.martin, j.rooksby, m.rouncefield]@lancaster.ac.uk, ifs@dcs.st-and.ac.uk

Abstract

In this paper we report on an ethnographic study of
a small software house to discuss the practical work of
software testing. Through use of two rich descriptions,
we discuss that ‘rigour’ in systems integration testing
necessarily has to be organisationally defined. Getting
requirements ‘right’, defining ‘good’ test scenarios
and ensuring ‘proper’ test coverage are activities that
need to be pragmatically achieved taking account of
organisational realities and constraints such as: the
dynamics of customer relationships; using limited
effort in an effective way; timing software releases;
and creating a market. We discuss how these
organisational realities shape (1) requirements
testing; (2) test coverage; (3) test automation; and (4)
test scenario design.

1. Introduction

Despite advances in formal and automated fault

discovery and their increasing adoption in industry, it
appears that testing, whereby software is ‘shown to be
good enough’ will continue as the principal approach
for software verification and validation. The strengths
and limitations of testing are well known (e.g. [19])
and there is healthy debate over automation (e.g.
[3][20]). Case studies (eg. [15][24]) have proved
valuable, and following in this programme of
‘empirical studies of testing’ (see [12]) we seek to
better describe the practical issues in testing for a small
software company.

Best practice in testing has been largely
uncontroversial, it being to adopt a phase based
approach (see e.g. [19][10][13]). The earlier phases in
these models have increasingly been automated (e.g.
unit testing [2]), whereas innovations focused on the
latter stages have been more human centric (for
example risk based testing [1]). Agile methods, such as
extreme programming (XP), disrupt such models with

test driven development and a rejection of any testing
that cannot be fully automated [8]. The agile approach
has been successful [24] but there remains a lack of
empirical evidence about such testing [18], and we are
concerned as to whether it solves or merely displaces
certain issues. Our experience is also that many
companies who have adopted XP practices, do not, in
fact, automate all tests.

Alongside the ‘best practice’ approaches there
continue to be more pragmatic guides to testing. For
example Whittaker [26] argues that “there is enough
on testing theory” and looks at “how good testers
actually do software testing”. Kaner [14] provides
wider “lessons” based upon his experiences in testing.
From such guides it seems that drawing and learning
from ‘experience’ is somehow as important as
following a rational approach to testing. The empirical
study in this paper confirms what Whittaker calls for
elsewhere [25]: for theory based and practice based
approaches to communicate and converge.

In this paper we discuss the pragmatics of software
testing for a small software company. The company,
which we shall refer to as W1REsys, follow a
programme of automated unit testing and a semi-
automated programme of integration and acceptance
testing. We focus on systems integration and
acceptance testing and find the notion of ‘rigorous’
testing is defined organisationally rather than in
accordance with some technical criteria. We discuss
why it is important for software engineering
researchers to understand that testing is a socio-
technical rather than a technical process and that, for
product companies there will inevitably be ambiguity
related to integration and acceptance testing.

2. Empirical studies of software testing

There is a recognized need for empirical studies of

software engineering, including ethnographic studies.
One of the strengths of ethnography is the ability to
take a broad focus on work rather than on a particular

method or technology. Studies of work in testing are
rare. Evans [10] gives a “fictional account of a real
testing environment … based on several actual project
situations in which the planning was poorly done”
(p187). Evan’s example shows that “without planning,
structure and order the testing of a system and software
components has little chance for success”. This
fictional example successfully demonstrates how
personal, organisational and procedural problems
spiral and blend within the overall problem of software
testing and emphasises that unique features of the
situation affect the ways in which successful testing
can be achieved (the example shows how a program
support librarian was key to a success because “she
was hard as nails.”)

There is a need for real world data, but this too, as
Collins [7] discusses for the transportation industries,
can fail to distinguish between ‘trying’ (extensively
testing the various limits of a technology) and
‘showing’ (providing a demonstration of the
technology passing particular tests for a particular
audience). Many descriptions in Software Engineering
research of the application of testing and verification
methods to real world problems, whilst welcome,
should be considered more-so as demonstrations than
as reports of how testing is done in practice. There is a
need for empirically gathered data about testing that
has no vested interest in demonstrating the superiority
of a particular method or technology. Such studies are
rare but include: Martin et al’s [17] discussion of the
integration testing of two healthcare technologies;
Runeson’s [22] investigation into unit testing practices;
Eisenstadt’s [9] collection of war stories about ‘hairy’
bugs; Knuth’s [16] discussion of using a log-book to
document errors; and Stringfellow and York’s [23]
description of component testing of a radar control
system. Empirical studies of “evaluation” can also be
helpful. For example Blythin et al’s [4] study of what
counted as ‘success’ and ‘failure’ for two groupware
systems.

3. An ethnography of software testing

This paper is based upon an ethnographic study of
software developers in a small software company that
develops a software product for business customers.
The study employed observational methods and in-situ
interviews to view, capture and understand work as it
happened via note taking, video, photographic and
audio recordings. A total of 30 days fieldwork were
undertaken in a period between July 2005 and April
2006. Our approach to analysis has been
ethnomethodological (see Button and Sharrock [5] for

a similar approach in software engineering). This
approach is to focus without prior hypotheses on
understanding how plans and procedures are
implemented in practice, how participants coordinate
their work, how they reason about their work and
organise their activities as a recognisable social
accomplishment. Here we are also interested in how
the developers reason about customers, the market,
requirements, the developing design and testing as they
carry out their work.

3.1. Working practice at W1REsys

The company produces a ‘write once, run

everywhere’ (w1re) development environment for end
users to develop applications (in XML) to run on
mobile devices such as mobile phones and pocket PCs.
The company has seven full-time employees, four of
whom are programmers. The programmers at the
study site use practices from XP such as story cards, an
on-site customer and frequent releases. However, they
have not adopted ‘pure’ XP in that they do not always
practice pair programming or automate all testing.

‘W1REsys’ was set up to take advantage of a niche
in the market for application development for mobile
devices. Due to the differences in mobile devices, the
same application has to be programmed and tailored in
different ways for e.g. pocket PC’s and various mobile
phones. W1REsys’s niche is to produce a development
environment with an integrated translation ‘engine’.
This allows end users to script applications for various
mobile devices in XML.

W1REsys have several established customers in
industries such as vehicle repair assistance, couriering
and supply delivery, but they are continually looking
to enhance the product, maintain customers on license,
and expand their market. They have produced a
‘generic’ application for a market area, rather than a
specific system for a specific customer or even a
specific sector, and are in the position of always
seeking to enhance the application and expand their
market.

3.1.1. Handling requirements. When they are
producing new requirements for ‘the next iteration’
W1REsys are engaged in a process whereby they
attempt to work out ‘what would be best to do next?’
They do have long-term aspirations and goals but
essentially define their development to take account of
immediate circumstances such as the possibility of new
customers, new requirements from existing customers,
etc. We believe that this fluid approach to product
strategy is likely to be common to many small software

product companies where the principal priority is
survival.

What defines the outcome of this process is
influenced by the ideas of the team, particularly the
more senior members of the company in charge of
sales, marketing, training and strategy. They are the
ones who provide the programming team with new
requirements to investigate and/or program. In
particular, the ‘XP Customer’ was the customer
relationship manager, rather than any particular
customer. This does not rule out ideas being generated
by the programmers themselves and they certainly
have a strong influence on how ideas are argued about
and realised or not.

So, what can we say about where the requirements
come from? Clearly, requirements do come from
customers and from understandings of customers, and
from understandings of the market, or ideas about the
potential market, but they do not usually come directly
from customers in the manner that might happen in
many agile projects. There is no contractual obligation
on W1REsys to deliver specific requirements for
specific customers. However, depending on their
precise relationship with W1REsys, a customer may
have a specific influence on development and have
their requirement incorporated into the product. This is
most likely, if a new requirement seems to be of
generic use, or it opens up new opportunities.

Requirements are produced because they seem to
make sense in terms of a balance of ‘can be done’,
‘would be useful to our customers – and may have
been requested by some’ and ‘would be good for the
product (and therefore market) development'. During
the programming phase these requirements become
crystallized as the programmers determine exactly how
they will be realised (or not) in code.

3.1.2. Unit testing. W1REsys carry out fully
automated unit testing of their code. They do not do
test driven development, and they do not test every
method in their code. They employ a mixed method
whereby sometimes the test is written before the code,
other times a test from their bank of tests is adapted
after coding to test the new code, or a new test is
written. When a new piece of code is to be integrated
with the pre-existing code base full regression testing
is run. In all, the code base is reasonably well tested
and bugs in the released system appear to be kept to a
manageable level. There are some interesting
inconsistencies in unit testing, problems with deciding
on appropriate tests and problems with deciding on
what an error is caused by, also some complicated and
interesting categorization and counting practices.

 3.1.3. Systems integration testing. The system
integration and acceptance testing phase ends up being
the time left between build and release. This phase is
referred to by W1REsys simply as “testing”; we have
introduced the term “systems integration testing”
ourselves for clarity. Generally this phase is adhered to
in terms of how much time is allotted although
programming time eats into it, and it may well
continue post-release (or at least bug fixing may well).

W1REsys use story and task cards for requirements
but for testing they use lists on a whiteboard of ‘we
need to test this, this, this’ (rather than ‘we need to test
this, in this way, and this will be are criteria for
indicating the test has been passed.’) As such the tests
are produced during the activity itself The criteria for
passing the tests are socially and situationally
produced. The developers work together on the tests,
with such things as “what seems sensible and possible
given what time we have?” and “what do we know or
think about users and use?” influencing the design of
the tests and the setting of pass criteria. This might
appear as complete ‘ad-hocery’ but given that they do
not know how companies and the developers using the
W1REsys product to design applications will use the
enhancements they tend to define tests in sensible
ways – looking to conduct ‘proof of concept tests’ for
hypothetical situations of use, often using resources to
see if what they have programmed basically works.

If and when end-users start using the development
environment for specific purposes bugs may come to
light and then be fixed and the end-user can (if
required) be assisted specifically. This leads us to
another interesting feature of integration and
acceptance testing for W1REsys; a good part of their
orientation during this period is to prepare
demonstration materials for the release. The tests that
have been passed can serve as demonstrations to assist
customers and users in taking advantage of the new
features of the system, they show how programming
can proceed and also demonstrate some of the
capabilities of the new features. Of course, this is also
very important in recruiting new customers. For these
reasons, much of the integration and acceptance testing
is concerned with ‘proof of concept’ testing and
documentation, rather than defect testing.

3.2. Examples of systems integration testing

We will discuss aspects of testing from two
‘iterations’ of development at W1REsys. In the first
iteration a major part of the development focused on
enabling end-users to write applications that could
access web services. In the second iteration the major

focus was the redevelopment of the “message push
server”.

3.2.1. Enabling the system to access web services:
The development of a requirement. There had been
some interest expressed by some customers in having
this facility and some discussion amongst the team.
The web services were not a ‘requirement’ that had
been specifically specified by a customer. Rather, it
had seemed like a sensible course of development for
the future. It would be suggested to current and future
customers that web services could well form a business
requirement for them, and that W1REsys would have a
demo to back this up. Consequently, Gordon (the
customer relationship manager) had written “web
services” as a ‘story’ for the team of programmers.

One of us sat in on the project planning meeting,
just prior to development when the programmers
scoped out and scheduled the tasks required to fulfil
the story. Planning the story proved to be a
complicated business, lasting all day. Planning was a
cooperative enterprise involving all four programmers
(Paul, Tom, Dale, Mark) with Paul (the experienced
developer mentioned earlier) overseeing the
organisation of the activity and doing most of the
whiteboard work. It had been originally conceived that
the web services could be accessed from the graphical
user interface in the interactive development
environment (IDE) of the system. The end-user could
simply type in the URL of the web services they
wanted to access, and press a button and a ‘web
services wizard’ would access the services and
download a list of them. The developer could then
select the ones they wanted to use.

The ‘theory’ behind believing that this requirement
was manageable was that W1REsys’s IDE uses XML
as the development language and that web services
description language (WSDL), used for describing the
available web services, is also XML based. During the
course of the planning session it became clear that the
task was not quite so straightforward as might have
appeared. Both W1REsys and web services might use
XML but their data elements, attributes and
relationships were likely to be modelled in different
ways, they would have different XML Schema
Definitions (XSDs), which would mean that the
translation of any given set of web services would
have to deal with the differences in XSDs, making the
task of producing the wizard more complicated.

Through discussion it became clear that the team
did not currently have an answer to how complicated
this issue was. One of the key issues was whether web
services used a standard form of XSD. No one in the
team knew for sure. In order to try and help the

planning, various discussions ensued amongst them,
books were consulted and web services accessed to
look at their WSDL and XSD. During the course of the
afternoon it was decided that they would go ahead with
trying to develop the requirement but that the first task
would be to assign two programmer person days to
“investigate WSDL tools” to test the viability of the
story. The end-result was that the ‘requirement’ was
not fully defined but was ‘good enough’ for progress
to be made.

3.2.2. Testing the web service functions. The
requirement for developing access to web services had
a ‘specifically vague’ quality by the end of planning.
The question as to whether a wizard would work for
all web services was left open, it was not supplied by a
specific customer and it was scheduled to be
investigated with the clear possibility that it might
even be shelved completely. Clearly, this was not a
situation in which it was possible to stipulate exactly
what the test would be in advance and it certainly
would not have made sense to spend some time
planning out a series of tests that might never be
needed.

At the end of the iteration the team had reached a
compromise regarding the web services wizard.
During development they had decided to develop two
mechanisms for composing requests to hit web
services. If it was a “primitive” service they could
automatically generate the request using the wizard,
and if it was a “complex” service (e.g. to collect a
repeated series of records such as search results) the
request could be programmed manually as XML.

Having no specific web services described in the
requirements or requested by customers, the team
decided that they would try to access both primitive
and complex web services over a range of mobile
devices. The main feature of the W1REsys product is
that it can translate single programs to different forms
of mobile device. As a result, the starting place for this
‘testing’ was a PPC and then secondly a (MIDP 2.0
conforming) mobile phone. The web services that they
used for testing were free services provided by a
service provider specializing in customer relationship
management solutions, and a spell check service
provided by an internet search company.

The companies provided full details of the (SOAP)
requests required to access their services and also of
the data that should be returned. Paul’s job during
testing was to write the code for the requests and then
test whether he was getting the response to firstly the
primitive requests, then secondly to the complex
requests on both the PPC and mobile phone.

Paul began with the PPC and encountered a
number of problems getting the requests to access the
web services, which provoked amongst other things
further work on their code. A central problem was that
it was often unclear if tests failed because of a lack of
response or errors in handling the response. Paul
managed to sort out this problem by using a network
analyser to view what was going on in the
communication between the PPC and the web services
provider. Eventually he managed to handle both simple
and complex services.

When we returned the next day, Paul was working
on exactly the same test but this time using a mobile
phone. Again, he encountered problems, but this time
they were harder to solve. The main problem here was
that he could not use the same method to understand
what was going on in the communication between the
phone and the web services. As he ruefully remarked
“mobile phones do not have telnet”. He was using a
combination of a real phone and several different
phone emulators that he had installed on his
workstation. However, he also remarked “emulators
are only of limited use – if the application works on
the emulator it probably works on the phone, if it does
not, the result that it produces may make no sense at
all.”

Getting the web services to work was a drawn out
process of trial and error with different members of the
group involved in the troubleshooting efforts at
different points. By the time Paul had sorted out the
web services for the phone and the PPC it was late on
Friday afternoon and the testing period was basically
over. The documentation produced during the testing
phase included a demonstration of using the web
services used in testing.

3.2.3. Building a new message push server: The
development of a requirement. During the testing
phase of the iteration discussed in the previous section,
the team had a conversation about the ‘push server’ in
their application. The push server is responsible for
‘pushing’ messages to remote devices. In this section
we summarize various conversations to do with
development and testing of this server.

The first example illustrates the ways in which a
problem gets formulated. This could also be seen as
the construction of a ‘requirement’. It should be clear
from the example that this was not the first time the
current push server had been questioned as there are
references to previous events. Furthermore the
iteration in which the new push server was constructed
did not happen until 7 months after this conversation.

The conversation begins when Gordon returns from
lunch and sits with them. He has been experiencing

problems when demonstrating the existing push server
to a customer. The conversations in this section are
taken from field-notes rather than recordings and so
are partially incomplete. We use ‘…’ to denote speech
we were unable to write down.

G “Is it dying a death?”
D “It’s okay for a couple of days …” He goes on to

explain that it makes so many connections that it takes
gigabytes of memory.

P “Is that server memory? You know they need to be
doubling the size of the server… they should be
distributing the load… you know, which is a bit of a
cop out… but if they’ve got someone who understands
Oracle then they should be able to role out to a couple
of servers…”

D “… its difficult.”
D “Well they were going up to 1000 users … the

impression I got was they want to make it enterprise
wide.”

G “Enterprise wide sounds like a critical issue.”
D Explains that this is from [Customer X] but “he

doesn’t seem that concerned.”
G “Something doesn’t sound right to me… you know last

year I was getting phone calls at 6am… we’ve always
known the push server is something we need to see to
again and again… and you know we’re going to get
scarier customers than [Customer X].” He explains
they might get a large repair company as a customer.

The example demonstrates how issues or concerns
become ‘something we need seriously to think about
dealing with’ as they accumulate over time and are
brought together conversationally by the team. The
problem is known about, has a history, may give a
negative impression to customers, and in terms of the
future development of the system and in the light of
potential new customers it is a prescient time to think
about re-building the server.

The conversation developed in an interesting
fashion. As we have stated, requirements are only fully
known when they have been produced through
programming. Therefore acceptance and integration
testing is scoped, revised and so forth during planning,
development and testing. As we can see here, this does
not stop testing being considered early on:

G “We’ve never figured out a way we can test it other
than get someone with 500 users.”

D “No, I can spike test but that’s not a proper test…”
P “No, … you could actually write a program that

makes several PCs make loads of connections.”

The discussion continues with the developers
trying to come to some understanding of how numbers
of users translate to numbers and timings for server
connections.

D “Its not like you’d get 100 users at a time…”
G “But the reality of 700 users is … every three minutes

it … and every 30 seconds if there’s something to
push.”

P “Ok, so every 30 seconds is a push check and, no,
every three minutes…”

G “That’s not a lot.”
D “That -is- a lot of connections.”
P “If you’ve got… then you’ve 20 a second doing a

select on the server, if you assume an even
distribution… you could have a peak of 600 but that’s
unlikely.”

P “…It’s not complicated but… you’d have to have a
maximum, … and you’d have to wait…”

G “Right, but 20 transactions a second isn’t a lot.”
P “No it’s not a lot, but … you’d have to …”
P “It means … buying a pool manager.”
G “Does Oracle come with a pool manager?”
P “Not one free…“
G “More than a couple of quid?”
P (laughs) “Writing a pool manager is not hard.”
G “So would that solve it?”
P “Alleviate it.”

The team were trying to scope the issue and set
sensible parameters. They went on to discuss how
there was a danger of losing customers to a rival
company and that a potential new customer had up to
1400 users. Our excerpt finishes with them looking for
inspiration for a new design:

G “How do [Company Y] do their code? Can we not
nick it?!”

P “I don’t know who they are.”
G “[Name of Product Y]”
M “Aren’t they on their own gateway?”
G “… They have a push server effectively.”
P “Really?”
G “…so it has 100 million people connected to it. It’s

alright you don’t have to go to 100 million straight
away!” There is laughter.

G “But it would be good to know how much time …”
G “So are you confident if we had a connection

manager that the problem would just go away? Or is
it just one thing in the scalability?”

D “… I don’t know the way out of it.”
G “I’ll speak to [Customer X], and I’ll speak to

[Customer Z] but the push server is likely to be
three or four weeks work.”

This example illustrates a lot of the ‘preparatory’

investigative work that is part and parcel of code
development in this company. The team are involved
in figuring out whether they need to re-build the push
server (how serious is the problem? who would use it?
what are the potential pitfalls of doing nothing? etc.),
how they would need to do this, what sort of resources
they could draw upon, how long the project would take
and how it would be tested.

3.2.4. Testing the message push server. The push
server iteration was an unusual one for W1REsys in
that it was 3 months in length, much longer than the
above estimate, and much longer than their usual
development cycle of 6-8 weeks. There was a general
aversion to longer iterations – for amongst other
reasons being ‘non-agile’ and being harder to manage
– but it was clear to the team that rebuilding the server
would take a longer time.

For the testing phase they had built a ‘test harness’:
the message server was installed on Paul’s machine
and they had devised a way to simulate messages being
sent from each of their workstations to the server and
back such that they could test whether the messages
were being sent and received successfully. Paul was
coordinating the test sessions which required the others
(Mark, Tom, Dale and Gordon) to configure their
machines for the test and initially to get them to send
out 1000 messages each, one after the other. As we
joined them they were just making sure that everyone
was correctly set up for the test. To monitor progress
Paul has a ‘push server monitor’ up on screen. This
allowed him to view the progress of the ‘messages’ as
they came from each machine. He provided a
commentary of the messages coming in. After minor
adjustments they came through successfully:

P “5000 – Amazing! Now I’m going to send one

message to all 5000 back.” All messages are
dispatched: “5000 calls on the API!”

As the messages get sent back the programmers
comment on them coming through. Again this is
successful so, after a joke about testing being finished,
they decide to double the amount of messages:

M “Mine are coming through. Got 700, sequentially.”
T Confirms his are also coming through.
P Looks over his system, then says to G “1000.”
G “So that’s scalability testing done? … That’s 5000

messages in a minute, will we try with more
messages?”

P “I’m thinking about trying 10000, so we have to
change to 2000 messages each … I think my machine
will potentially shit it with 10000 sockets, we need to
change our offsets. Double them both, all of you.”

In the second test only 9985 successful
connections to the push server are managed, meaning
15 had been denied. This raised concern, but was
offset by Dale noting:

D “But this is just the test harness.” (i.e. it will work
slightly differently in a real situation).

They then dispatched 2000 messages back to each

client. It took 30 seconds to dispatch 10000 messages.

As the test ran they talked about further tests
particularly one on message prioritisation. This talk
was interrupted as problems occurred:

P “We’ve still got 15 users missing.” He spots in the
‘Push Server Monitor’ that D is unregistered.

T “I’ve only got 200 and something through.”
P “Waiting queue monitor pointer exception,

exception in thread. There’s a problem with the push
server, it broke!”

M “It’s got to be something straightforward but it
could be hard to find.” He checks through files but
there is “nothing obvious right now … Why would it
do that? It doesn’t make sense.”

G “My connections died – could it be anything to do
with that, maybe?”

P “One message failed and caused the whole thing to
stop.”

M “We want to sort the whole thing out higher up, it
should still continue if the message fails rather than
bothering to try and understand why the message
failed. In reality it should just try and send it
again.”

P Looks at the code “There’s nothing on this thread to
handle general exceptions.”

The test failed, and the team realised that this was
because failed messages were causing the whole queue
to fail, which lead them to consider why this was the
case. After some examination of code Mark suggested
that they should focus on a means of keeping the queue
operating in the face of failures by putting failed
messages to the end of the waiting queue. They
proceeded to devise a method for doing this, tagging
failed messages with a lower priority that placed them
to the end of the queue so that other messages behind it
would still be delivered.

After ‘solving’ this issue the testing naturally
moved onto message prioritisation. A third of
messages were tagged as priority ‘1’, a third with ‘2’
and a third with ‘3’. The delivery would work
according to the principle that three ‘1s’ will be
delivered followed by two ‘2s’, then one ‘3’. As the
messages are delivered, when all the 1s are delivered
there will still be 2s and 3s, and eventually the queue
should end with the delivery of the remaining 3s.
When they set the test in motion they did not get the
messages coming through in the right priority. Dale
explained:

D ”We need to use a round robin to take 3 priority 1s,
then 2 priority 2s, then 1 priority 3 off the queue
because otherwise priority 1 might always be top of
the queue, as a failed priority 1 would always go to
the top of the queue. But anyway, we would expect to
see more priority 1s coming through, but this is not
the case.”

This lead to a number of investigations as to why
prioritisation was failing before the team focused in on
the code for the round robin (rr) queue:

P Looks at the code “This round robin queue doesn’t
look right.”

D “No, it isn’t.”

Although Paul and Dale felt they had basically
located the problem they could not find out exactly
what was causing it and it was only after Dale had
spent some time walking through the code that he
managed to find that it was the ‘peek and remove’
procedure that was operating on the ‘rr counter’. It was
reading (peeking – a check of whether the number
matched) and not removing the item it was peeking at,
i.e. not taking the right thing off the queue. Dale
explained how he had verified his solution:

D “I found the peek problem through doing a code
walkthrough, the pattern of the messages currently
being delivered served as the verification… it’s often
easier just to walk through the code when a problem
arises. The rr counter was being modified by the
peek and remove. It was saying it was looking in one
place when it was looking elsewhere.”

Paul and Dale then ran the test again, and it was
successful this time, so they did a full build. This
finished the first of three weeks of testing for the push
server. They now knew it should be able to handle at
least 10000 connections at once, and also be able to
handle prioritisation. This meant that they could
specify this capacity and performance to current and
future customers and also demonstrate it.

4. Lessons learned

In his seminal work on the ‘art’ of software testing
Myers makes a strong case not only that software
testing is often misunderstood but also that the
determinants of successful software testing have little
to do with purely technical considerations but are best
seen as issues of economics and psychology. Whilst
we agree with Myers’ general argument that software
testing should not be regarded as merely a technical
issue, we now want to draw on our empirical findings
in order to reframe his formulation of the software
testing problem, suggesting instead that testing
problems are primarily organisational in character and
consequently that they may be best addressed, if not
resolved, by organisational and inter-organisational
means.

So, for example, what Myers identifies as
economic issues, of prioritising resources and costs,
are easily reframed as a classic example of Garfinkel’s

[11] ‘administrator’s problem’ since decisions on
whether the time and effort are justified are essentially
and contingently organisational rather than purely
economic. We also suggest that other software testing
problems, seen as predominantly ‘psychological’ by
Myers appear, from our empirical evidence, to be
better couched in terms of a range of mundane
organisational issues connected to planning, tracking,
coordinating etc. Just as Garfinkel in his phrase ‘good
organisational reasons for bad organisational records’,
documents the range of good organisational reasons
behind recording systems that are generally less than
perfect, reasons that work to the advantage of the
organisation concerned, so we also suggest a range of
organisational concerns that complicate the testing
process, a process that is characteristic of many
‘wicked problems’ [21]; and for which there are,
perhaps, only ‘satisficing’ solutions. The use of
scarequotes around ‘bad’ software testing in our title is
not a judgement on the methods or the company that
was the focus of our research but an acknowledgement
of the everyday reality of real world, real time testing.

One overwhelming feature of everyday, mundane
organisational reality for all companies is how to
deploy limited testing resources to find faults or design
problems, or to see if their system operates in the
desired manner and meets customer needs. The testing
problem is exacerbated by organisational and
commercial pressures for rapid delivery of software,
increasing complexity, more demanding quality
requirements and volatile system requirements.

For small product development companies, the
problems of resource deployment are even more acute.
W1REsys are a start-up company working on venture
capital, developing a ‘generic’ system. As such, they
are designing for a range of users and potential future
users. Their priority is survival which means firstly,
generating cash flow from customers and, secondly,
building and maintaining customer relationships. We
believe that these considerations are likely to be shared
with most small software companies so our
conclusions here are not specific to W1REsys.

W1REsys are not ignorant of best practice in
software testing (test case design, test coverage,
regression testing, etc.) but, for good organisational
reasons, chose not to adopt this but to orient their
testing to meet organizational needs. Their driving
priorities are:
1. The dynamics of real customer relationships.
Gordon, the customer relationship manager, meets
customers regularly and feeds back information from
these meetings to developers. The feedback is not
‘hard’ requirements but more general thoughts on how
customers anticipate using the product.

2. Using limited effort in the most effective way. As
discussed, testing effort is very limited and, sometimes,
effort has to be diverted to more pressing concerns
such as emergency bug fixes for major customers.
3. The timing of software releases. Software releases
are timed around the needs of major customers and the
features included in a release are influenced by these
customers and the development effort available.
4. The need to ‘grow the market’ for the system. As
well as satisfying existing customers, it is important to
anticipate what customers (both existing and new) may
wish in future. The previous discussion on linking with
web services is a good example of this.

These priorities influence different aspects of the
testing process namely: requirements testing, test
coverage, test automation and test scenario design.

4.1. Requirements testing

In principle, requirements tests should be complete
insofar as all aspects of all requirements are tested for
both normal and exceptional operation. In practice in
W1REsys, the fluid, negotiated nature of requirements
makes this impossible. Requirements and therefore
system integration tests are derived as a judgement
from a variety of sources. Tests are related to
requirements – as we have seen, especially in the push
server example, tests are scoped alongside, and as a
part of deriving a requirement – however, even when a
requirement has been realized the question of a
sufficient test is still open. An ‘adequate’ test of any
requirement in W1REsys’s case means taking a
consideration of how and when it is likely to be used
and which customer will use the associated feature.

When a requirement is proposed, only the fullness
of time will tell whether that requirement is a sensible
or successful one. For example will a requirement that
happened to take up a long time to develop only serve
a single user or will it open up a new market? The
same is true for the adequacy of testing; future uses
and customers may show testing to have been
inadequate.

From our examples it was clear that the higher
capacity push server was something that customers
wanted now, however, when we discussed the web
services facility with Paul after the iteration he told us
that it might be 6 months or so before any customer
used them. This initially surprised us. However, we
realised that a lot of W1REsys’s requirements are for
the future, and as such involve predictions about what
will be desired in the future. They had to anticipate
customer needs and what might sell the system to new
customers. The role of testing in this case is to

demonstrate the requirement rather than to discover
defects in its design or implementation.

4.2. Test coverage

For W1REsys it is clearly impossible to define
what complete testing might be, they simply do not
know at the point of testing just what all the possible
situations of usage and uses their system will be put to.
Different customers (and potential customers) will
want to build different applications for different
mobile devices, and will have different requirements
for managing communications with those devices. In
this way testing can never have complete coverage.

From the examples discussed it is clear that testing
could have been more extensive. However, the need to
retain existing customers and the target release dates
for the software restricted coverage. More attention
was paid to testing features that large customers were
likely to use in the next release. The key issue was not
how extensively a feature had been tested but whether
or not it been tested sufficiently for the customer to
make effective use of it. W1REsys’s approach is
thoroughly pragmatic – why waste resource on
something that cannot be well defined in advance?

4.3. Automating testing

Using fully automated acceptance tests entails a
particular style of development that produces ‘testable’
code. It also entails a customer relationship whereby
the customer is thinking about their software is
‘testable’ ways. Could automated testing ‘solve’ or
pre-empt the organizational issues we recognize?
Automated tests are unambiguous – there are clear
criteria established for a successful test and the test
results are checked automatically against them. The
‘XP Customer’ at W1REsys was the customer
relationship manager, and so responsibility for
requirements and testing lies within the company. The
notion of a test as a ‘contract’ between the customer
and the software developers makes little sense in this
situation. They do not wish to define their
requirements to the level of detail where it would be
possible to construct an unambiguous, automated test.
Furthermore, the need to meet release dates meant that
the customer relationship manager re-interpreted what
is meant by ‘passing a test’. If tests had ‘failed’, there
would still have been the need for discussion and
interpretation of the test results.

Our results confirm many of the suggestions made
by Berner et al [3] to be sensible, and confirm that it is

unrealistic to expect automated tests to fully replace
manual tests.

4.4. Test scenario design

The development team at W1REsys informally and
cooperatively derive scenarios in an on-going fashion
throughout development and testing. They are seen to
be involved in imagining how different users (both the
customer as part of their business, and the end-user as
a programmer) would use the system. For example,
they envisage what sort of web services, accessed via
what kind of device a customer might use, or, how
many connections would different users require to the
push server, over what time and with what
prioritisation? Developers’ informal production and
talk about scenarios helps the design crystallize.

The big questions for W1REsys lies in the
adequacy of the scenarios – is their research good
enough, do they really understand their customers?
The nature of their operation which includes a number
of different customers makes it difficult for them to
construct generic scenarios that include the
requirements of different customers. Their test
scenarios therefore tend to be fragmented and
incomplete. Chillarege [6] points out the methodology
of developing user scenarios and using enough of them
to get adequate coverage at a functional level continues
to be a difficult task and our findings further
compound such problems.

5. Conclusion

Our studies have shown that, for this type of small
company involved in software product development,
there is a disconnect between software testing research
and practice. Software testing research has largely
focused on making testing ‘better’ in technical terms –
improving the design of tests, designing tools to
support testing, measuring test coverage, etc. In
practice, these don’t help as the key issue is how to
design tests that are most effective in satisfying
organizational needs and that minimize the effort and
time required to demonstrate that software is ‘good
enough’.

Our studies of W1REsys have convinced us that
the agenda for software testing research has to be
extended to address the relationship between the
organization and the testing processes. Alongside the
existing hypothesis driven case studies of methods and
technologies, Software Engineering’s programme of
empirical research on testing can benefit from studies
of work that seek to understand testing as it happens.

Our study has been of a single company, and whilst
there are general lessons to be learned here, further
studies of work in similar or dissimilar companies will
help in developing an understanding of the
organisational rationale for how software testing is
practiced.

6. References

[1] Bach, J., “Risk Based Testing. How to Conduct Heuristic
Risk Analysis”, Software Testing and Quality Engineering
November/December, 1999. pp.23-28.

[2] Bashir, I., and A.L. Goel, Testing Object Oriented
Software. Life Cycle Solutions. Springer, New York, 1999.

[3] Berner, S., R. Weber, and R.K. Keller, “Observations and
Lessons Learned from Automated Testing” Proc.
International Conference on Software Engineering ICSE’05,
St. Louis, 2005. pp.571-579.

[4] Blythin, S,, J., Hughes, S., Kristoffersen, T. Rodden, and
M. Rouncefield, “Recognising ‘success’ and ‘failure’:
Evaluating Groupware in a Commercial Context”, Proc.
Group’07, ACM Press New York, 1997. pp.39-46.

[5] Button, G., and W. Sharrock, “Occasioned Practices in
the Work of Software Engineers”, IN Jirotka, M., and A.
Goguen, (Eds.) Requirements Engineering. Social and
Technical Issues. Academic Press, London, 1994. pp.217-
240.

[6] Chillarege, R., “Software Testing Best Practices”, IBM
Research Report RC 21457, Log 96856. IBM Research,
York Town Heights, 1999.

[7] Collins, H. “Public Experiments and Displays of
Virtuosity: The Core Set Revisited”, Social Studies of
Science, 18 (4) 1988. pp.725-748.

[8] Crispin L., and T. House, Testing Extreme Programming.
Addison-Wesley, New Jersey, 2003.

[9] Eisenstadt, M., "My hairiest bug war stories”, Comm.
ACM, 40 (4), 1997. pp.30-37.

[10] Evans, M.W., Productive Software Test Management.
John Wiley & Sons, New York, 1984.

[11] Garfinkel, H., Studies in Ethnomethodology. Prentice
Hall, New Jersey, 1967.

[12] Harrold, M.J., “Testing: A Roadmap”, Proc.
International Conference on Software Engineering ICSE’00,
Limerick, 2000. pp.61-72.

[13] kaner, C., “Software Testing as a Social Science
Problem”, Canadian Undergraduate Software Engineering
Conference, Montreal, Canada, 2006.

[14] Kaner, C., J. Bach, and B. Pettichord, Lessons Learned
in Software Testing, John Wiley & Sons, New York, 2002.

[15] Kim, J-M., A. Porter, and G. Rothermel, “An Empirical
Study of Regression Test Application Frequency”, Proc.
International Conference on Software Engineering ICSE’00,
Limerick, 2000. pp.126-135.

[16] Knuth, D.E. “The Errors of TeX”, Software-Practice &
Experience, 19 (7) 1989. pp.607-685.

[17] Martin, D., M. Hartswood, R. Slack, and A. Voss,
“Achieving Dependability in the Configuration, Integration
and Testing of Healthcare Technologies”, Journal of
Computer Supported Cooperative Work, In Press.

[18] Mosley, D.J., and B.A. Posey, Just Enough Software
Test Automation. Prentice Hall, New Jersey, 2002.

[19] Myers, G.J., The Art of Software Testing. John Wiley &
Sons, New York, 1976.

[20] Ramler, R., amd K. Wolfmaier, “Economic Perspectives
in Test Automation: Balancing Automated and Manual
Testing with Opportunity Cost” Proc. Automation of
Software Test AST’06, Shanghai, 2006. pp.85-91.

[21] Rittel, H. and M. Webber, "Dilemmas in a General
Theory of Planning," Policy Sciences 4, 1973. pp. 155-159.

[22] Runeson, P., A Survey of Unit Testing Practices. IEEE
Software, July/August 2006, pp22-29.

[23] Stringfellow, C.V., and D.L. York, “An Example of
Practical Component Testing”, Journal of Computing
Sciences in Colleges, 19 (4) 2004, pp.203-210.

[24] Talby, D., A. Keren, O. Hazzan, and Y. Dubinsky,
“Agile Software Testing in a Large Scale Software Testing
Project”, IEEE Software, July/August 2006. pp.30-37.

[25] Whittaker, J.A., “What is Software Testing? And Why
is it so Hard?” IEEE Software, January/February 2000. pp70-
79.

[26] Whittaker, J.A., How to Break Software. Addison
Wesley, Boston, 2003.

