
7 8 I E E E  S o f t w a r e M a r c h / A p r i l  1 9 9 9 0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0  ©  1 9 9 9  I E E E

equirements problems are expensive and plague almost all systems and
software development organizations. In most cases, the best you can
hope for is to detect errors or omissions in the requirements in time to
contain them before the product is released. With luck, nonessential func-

tionality can be traded for product quality. All too often, however, the product is late,
over budget, and of poor quality, while failing to meet crucial customer requirements.

Faced with recurrent requirements problems, organizations often turn to soft-
ware process improvement for a solution.1,2 Unfortunately, SPI seldom fixes problems
rooted in the requirements process because existing SPI models concentrate on the
downstream phases of development. The SEI’s Capability Maturity Model for
Software,3 for example, explicitly addresses requirements processes only in the level
two Requirements Management key practice area. The more recent Systems
Engineering CMM4 has greater coverage of requirements engineering, but is widely
and incorrectly perceived to be aimed only at niche industries.

R

Requi rements  management  has  a  c r i t i ca l  e f fec t  on  an
organizat ion’s  deve lopment  costs  and  so f t ware  qua l i t y. The
authors  have  deve lop ed a  metho d that  a l low s  incrementa l ,
sys temat ic  improvement  o f  requi rements  engineer ing  and
bui lds  on  ex i s t ing  SP I  mo dels  and  s tandards, f i l l ing  in  the
gaps  to  improve  schedules, budgets, and pro duc t  qua l i t y.

Pete Sawyer, Ian Sommerville, and Stephen Viller, Lancaster University

Capturing the
Benefits of
Requirements
Engineering

Nuts

Nuts

B
o

lts

B
o

lt
s

N
U

T
S

 &
 B

O
LT

S
:K

ar
l W

ie
g

er
s 

an
d

 D
av

e 
Ca

rd
,e

d
it

o
rs

 • 
kw

ie
g

er
s@

ac
m

.o
rg

 / 
ca

rd
@

co
m

p
u

te
r.o

rg

.



SPI has improved the process of developing prod-
ucts from requirements,5 but it hasn’t helped the 
development of requirements from customers.
Consequently, many SPI programs stumble because
they do not adequately address the requirements
problems that underlie poor product quality.
Timeliness, cost control, and quality may improve,
but the level of achievable improvement is capped
by flaws in the requirements process.6

The limitations of SPI motivated the Esprit
Requirements Engineering Adaptation and Improve-
ment for Safety and Dependability, or Reaims, pro-
ject. The Reaims industrial partners develop mission-
critical systems, where the quality implications of
poor requirements handling are particularly serious.
When Reaims started, changes in the partners’busi-
ness sectors were forcing changes to their business
processes. For example, an evolutionary shift from
customer- to market-driven projects was forcing
them to reexamine how they balance technical user
and strategic organizational requirements. They
needed practical measures to improve their require-
ments handling and to help them adapt.

Reaims has developed several novel require-
ments engineering methods and tools to address
specific problems identified by the industrial part-
ners. For example, the Reaims PREview method7

helps structure the discovery of requirements and
requirements sources. What distinguishes Reaims,
however, is that we also address the problem of in-
tegrating new tools and methods into an organiza-
tion. New techniques impose additional require-
ments on the requirements process; they can’t
simply be plugged in and expected to work. If ap-
propriate measures aren’t taken, a process won’t be
able to support or exploit a new method. The im-
portance of the integration problem is often under-
recognized and partly explains the poor industrial
take-up8 of new requirements methods.

We sought to lay a foundation of good practice

to underpin the Reaims methods and tools. We also
realized that industry’s current enthusiasm for SPI
provided an opportunity to stimulate a general im-
provement in requirements engineering practice.
Our answer was to develop the Requirements
Engineering Good Practice Guide (REGPG),9 which
draws on existing SPI models to define a process im-
provement framework for the systematic, incre-
mental adoption of good requirements practice.

The REGPG reflects our conviction that, al-
though many unsolved problems exist in require-
ments engineering, many more can be solved
using well-established good practice. Even where
problems are inadequately understood, the con-
sequences for individual projects can usually be
contained if adequate support exists within the re-
quirements process.

The Requirements Process
Maturity Model

The REGPG is based on an improvement frame-
work that, like the CMM, uses multiple process ma-
turity levels (see Figure 1). Maturity levels help char-
acterize a process and set out a strategy for its
improvement. Rather than requiring that a process
be modeled in detail (a difficult and expensive ac-
tivity), we can devise a checklist of questions that
allows us to broadly classify a process as a level n
process. We can then plan improvement to level n+1
by knowing approximately what the process’s ex-
isting capability is and what realistic improvement
targets we can achieve from a set of possible im-
provement measures.

In contrast to the CMM, the REGPG has only three
maturity levels. The CMM uses a five-layer frame-
work, but the current state of the practice makes it
doubtful whether any requirements processes exist
that could be characterized beyond level 3, Defined.

M a r c h / A p r i l  1 9 9 9 I E E E  S o f t w a r e 7 9

Nuts

Nuts

B
o

lts

B
o

lt
s

Despite a half-century of progress in software development, many organizations continue to struggle
with the elicitation, specification, and management of requirements. Many effective techniques are avail-
able to deal with these issues, but few are widely and routinely practiced by development organizations.
This paper advocates complementing a sensible emphasis on existing requirements engineering “good
practices”with other software process improvement initiatives. A requirements process maturity model pro-
vides a structure to assist organizations with the practical, phased adoption of improved requirements
practices. This model recognizes that certain basic practices are both easy and cheap to adopt, while oth-
ers must build on a solid foundation of systematic and institutionalized requirements practice to be suc-
cessful. The dynamic and communication-intensive nature of software requirements engineering guar-
antees that a silver-bullet solution does not exist. However, the application of established good practices
can help any organization improve the quality of its requirements, and hence the quality of its products.

—Karl Wiegers and David Card, Nuts & Bolts Editors

.



We know of none from which we could extract
generic principles, so we have limited our model to
three levels.

♦ Level 1: Initial-level organizations have an ad
hoc requirements process. They find it hard to esti-
mate and control costs as requirements have to be
reworked and customers report poor satisfaction.
The processes are not supported by planning and
review procedures or documentation standards but
are dependent on the skills and experience of the
individuals who enact them.

♦ Level 2: Repeatable-level organizations have
defined standards for requirements documents and
have introduced policies and procedures for re-
quirements management. They may use tools and
methods. Their documents are more likely to be con-
sistently high in quality and to be produced on
schedule.

♦ Level 3: Defined-level organizations have a de-
fined process model based on good practices and
defined methods. They have an active process im-
provement program in place and can make objec-
tive assessments of the value of new methods and
techniques.

In our experience, nearly all requirements
processes are at level 1. Most organizations have
pockets of good practice, but their benefits are usu-
ally diluted by weaknesses elsewhere. The key to im-
provement is increasing the use of appropriate good
practice. This is not simply a matter of buying more
tools or converting to new approaches, such as ob-
ject-oriented analysis, but of introducing the right
practices, in the right order, at the right pace, and
with the required degree of strategic commitment.

Faced with a large range of possible technical
fixes and managerial procedures, an organization
may find it difficult to decide where to start. The
REGPG addresses this by distilling guidance on good

practice into guidelines. These are designed to help
organizations make a rational assessment of which
practices offer the best cost and benefit tradeoffs
for their practical needs.

Good Practice Guidelines

The REGPG describes 66 good practices that we
abstracted from existing standards,10 reports of re-
quirements practices,11,12 and the experience of
Reaims partners. We have recognized that, while
consensus exists about the utility of some practices,
the value of others are project-, organization-, or ap-
plication-domain-dependent. Similarly, some prac-
tices must be underpinned by other measures or re-
quire specialist expertise. To reflect this, we classify
the practices according to whether they are basic,
intermediate, or advanced.

♦ Basic practices represent fundamental mea-
sures that underpin a repeatable process. They are
seldom technical solutions, but are usually focused
on defining organizational procedures or docu-
mentation standards. Organizations should adopt
basic practices before considering others.

♦ Intermediate practices are more technical and
usually require that basic practices be in place for ef-
fective management. They help make the process
systematic by, for example, using defined methods
in conceptual modeling.

♦ Advanced practices require substantial spe-
cialist expertise and support continuous improve-
ment. They also include practices that most benefit
specialist domains. They must usually be under-
pinned by basic and, occasionally, intermediate
practices.

Clearly, the classification we chose for some of
the practices could be debated. The requirements
engineering research community tends to under-
estimate the difficulty of introducing seemingly
straightforward practices into a live process. For ex-
ample, we think the collection of requirements from
multiple perspectives or viewpoints is an apparently
simple and commonplace practice. However, we
classify it as an intermediate rather than a basic prac-
tice because it is costly to introduce the explicit man-
agement of multiple viewpoints. We have tried to
err on the side of caution and concentrate on es-
tablishing a sound baseline for improvement.

It is not enough to rate practices as basic, inter-
mediate, or advanced. In most cases, improvement
must be achieved in carefully planned and moni-

8 0 I E E E  S o f t w a r e M a r c h / A p r i l  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s

Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Figure 1. The three-level Reaims process

maturity model.

.



tored stages rather than by dramatic, wholesale
change. An organization aiming to attain level 2 will
not introduce all the basic practices at once—that
could fatally destabilize its process. It will instead in-
troduce improvements incrementally, and will re-
quire an assessment of the costs and benefits. To help
with this, the REGPG presents good practices in the
form of guidelines (see the boxed text, “Example
Guideline”). Each guideline provides a qualitative as-
sessment of the following factors:

♦ The key benefits of the practice. This outlines
the improvements that can be expected by adopt-
ing the practice.

♦ The cost of introducing the practice. This indi-
cates the level of effort and investment needed to
integrate the practice in an existing process, such as
staff training and support systems. We distinguish
between the costs of introduction and application
because even if the eventual benefits are large, the
introduction of some practices needs careful timing.

M a r c h / A p r i l  1 9 9 9 I E E E  S o f t w a r e 8 1

E X A M P L E G U I D E L I N E
Defining a checklist or checklists will help focus the at-

tention of requirements validators on critical attributes of

the requirements document. These checklists can identify

what readers should look for when they validate the system

requirements.

Key Benefits: Help focus the validation process

Costs of introduction: Low to moderate

Costs of application: Low

Guideline type: Basic

Benefi ts
♦ Checklists add structure to the validation process, making

it less likely that readers will forget to check aspects of the re-

quirements document.

♦ Checklists help train people new to requirements valida-

tion. This is particularly important for customer management and

end users who may not have requirements validation experience.

Implementation
These checklists focus on individual requirements; validation

checklists should also be concerned with the quality properties

of the requirements document as a whole and with the rela-

tionships between individual requirements. This can’t be checked

during requirements analysis as the requirements document is

unfinished at that stage.

Questions that might be included in such a checklist should

cover the following general issues:

1. Are the requirements complete? Does the checker know

of any missing requirements, or is any information missing from

individual requirement descriptions?

2. Are the requirements consistent? Do the descriptions of

different requirements include contradictions?

3. Are the requirements comprehensible? Can readers of the

document understand what they mean?

4. Are the requirements ambiguous? Are different interpre-

tations possible?

5. Is the requirements document structured? Are related re-

quirements grouped? Would an alternative structure be easier

to understand?

6. Are the requirements traceable? Are requirements unam-

biguously identified with links to related requirements and to

the reasons these requirements have been included?

7. Do the requirements document and individual require-

ments conform to defined standards?

Checklists should be expressed in a general way and should

be understandable by people who are not system experts, such as

end users. As a general rule, checklists should not be too long, 10

items or less. If you have more than this, checkers can’t remember

all the items and must continually consult the checklist. The dan-

ger is that the checklist will become too vague and that it is im-

possible to answer the checklist questions in any useful way. You

must therefore find the right balance between generality and de-

tail. Unlike program inspections, low-level checklists concerned

with very specific faults are not good for requirements inspections

because the requirements for different types of systems vary.

Checklists can be distributed and used to remind people

what to look for when reading the requirements document.

Alternatively, they can be used to indicate when a checklist item

has been considered. This may be done with a simple database

or spreadsheet.

Costs and Problems
This is not an expensive guideline to implement if you use a

general checklist with questions like those listed above. To in-

troduce the guideline, draw up an initial checklist based on the

experience of people who have been involved in requirements

validation.

If a checklist is simply used as a memory aid, there are no costs

involved in applying the guideline. If the requirements checkers

must mark each requirement against the checklists, some addi-

tional time is required, but not more than one or two minutes

per requirement.

In principle, you should have few problems applying the

guideline if you have a flexible process that allows people to ig-

nore inappropriate checklist entries. Some requirements ana-

lysts may resent the introduction of checklists, but you should

emphasize that checklists are designed to help them and that

they must use their professional judgement.

Adapted from Requirements Engineering—A Good Practice Guide, by Ian Sommerville and Pete Sawyer. Copyright John Wiley & Sons Limited.

Reproduced with permission.

.



For example, it may be impractical in the short term
to send staff for training close to a project milestone.

♦ The cost of applying the practice. This indi-
cates the effort required to use the practice effec-
tively once introduced. This helps an organization
do a cost–benefit analysis of its process improve-
ment measures since some practices consume ad-
ditional resources.

The following guidelines are organized accord-
ing to the process deliverables or activities to which
they mainly contribute.

♦ The requirements document: Structuring and
organizing the requirements document to effec-
tively communicate requirements to customers,
managers, and developers.

♦ Requirements elicitation: Acquisition of re-
quirements and constraints from system stakehold-
ers, the application domain, and the system’s oper-
ational and organizational environments.

♦ Requirements analysis and negotiation:
Identification and resolution of issues arising from
the elicited requirements.

♦ Describing requirements: Writing require-
ments to aid readers’understanding.

♦ System modeling: Developing conceptual
models to aid understanding and analysis of the re-
quirements and their implications for the proposed
system.

♦ Requirements validation: Establishing proce-
dures to check for correctness, completeness, con-
sistency, and compatibility. Ensuring that require-
ments are verifiable and that quality standards are
adhered to.

♦ Requirements management: Managing re-
quirements information throughout the develop-
ment life cycle.

♦ Requirements engineering for critical systems:
Practices for handling requirements for critical sys-
tems, such as safety or reliability requirements.

As an example, Table 1 lists the guidelines for re-
quirements management. The association of prac-
tices with process deliverables or activities offered
us a choice of model “architecture”:

1. We could adopt a staged architecture like the
CMM and associate each process deliverable or ac-
tivity with a particular maturity level. For exam-
ple, to reach level 2, an organization should adopt
all the good practices in the requirements docu-
ment describing requirements and requirements
management.

2. We could adopt a looser, continuous architec-
ture, like SPICE,13 where improvement can be
achieved by adopting practices across a range of
process deliverables or activities.

We selected option 2 partly because of its flexi-
bility. More importantly, however, we could not say

8 2 I E E E  S o f t w a r e M a r c h / A p r i l  1 9 9 9

Table 1
Requirements Management Good Practices

Good Practice Cost of Cost of Guideline Key Benefit
Introduction Application Classification

Uniquely identify each requirement Very low Very low Basic Provides unambiguous references
to specific requirements

Define policies for requirements Moderate Low Basic Provides guidance for all involved
management in requirements management
Define traceability policies Moderate Moderate Basic to Maintains consistent, traceable

to high intermediate information
Maintain a traceability manual Low Moderate Basic Records all project-specific trace-

to high ability information
Use a database to manage Moderate Moderate Intermediate Makes it easier to manage large
requirements to high numbers of requirements
Define change management policies Moderate Low to Intermediate Provides a framework for systema-

to high moderate tically assessing change
Identify global system requirements Low Low Intermediate Finds requirements likely to be

most expensive to change
Identify volatile requirements Low Low Advanced Simplifies requirements change

management
Record rejected requirements Low Low Advanced Saves re-analysis when rejected

requirements are proposed again

Nuts

Nuts

B
o

lts

B
o

lt
s

.



which process deliverables or activities should take
priority over others in all cases. We have a more
vague view of a generic requirements process than
CMM’s designers had for the software development
process. In practice, it often makes sense to concen-
trate resources on a particularly weak process de-
liverable or activity, but where weaknesses exist
across the requirements process, the prioritizing of
improvements needs to be more flexible.

Assessing Processes and
Planning Improvements

A key requirement of any process improvement
model is usability. This involves determining the
baseline from which improvement must begin,
which means the process engineer has to discover
the existing strengths and weaknesses. This can be
surprisingly difficult because people inevitably have
their own perspectives on a process. Process actors
will bias their model and external process engineers
must collect and rationalize each person’s perspec-
tives into a coherent model. In other words, model-
ing a process is like requirements engineering.

When process improvement is certified, this is a
difficult issue. CMM-accredited process assessors take
several days to inspect an organization and estab-
lish its position in the maturity level framework. This
provides a degree of objectivity and ensures that all
organizations know in advance the criteria by which
they will be judged. Improvement planning is based
on addressing the key practices in the key process
areas required to attain the next maturity level.

The REGPG is not intended for certification, so we
can afford to be less rigorous. However, the advan-
tages of an assessment scheme, like CMM, that uses
a combination of data collection and analysis are
compelling. We recommend a hybrid that supple-
ments checklists with the knowledge of the process
actors and the judgment of the person performing
the assessment. This does not build a detailed model
of the process, but does reveal what practices are in
use and to what extent. This allows us to position the
process within the improvement framework and
identify where the use of good practice is weak. In a
large organization, the extent of good practice use
will vary according to project, engineer, and cus-
tomer. To accommodate this inevitable variation,
each good practice is assessed by these criteria:

1. Standardized (score 3). The practice has a docu-
mented standard in the organization and is followed

and checked as part of a quality management process.
2. Normal use (score 2). The practice is widely fol-

lowed in the organization but is not mandatory.
3. Discretionary (score 1). Some project man-

agers may have introduced the practice, but it is not
universally used.

4. Never (score 0). The practice is never or rarely
applied.

The assessment process includes phases for se-
lecting people to interview, initial scoring, refinement,
and final maturity level calculation. This permits re-
solving uncertainties by renegotiating the assessor’s
model of the process with those of the actors. The
maturity level is calculated by summing the numer-
ical scores for each practice used (see Table 2).

A continuous-improvement architecture must
classify the maturity of a process without being
over-prescriptive about the practices at each level.
Our approach, like SPICE, measures the extent to
which individual practices have been implemented
and institutionalized to assess the maturity level of
each process area, because this allows process en-
gineers to be flexible when targeting improvement
efforts. Our experience indicates that, while this
flexibility is welcomed at the operational level, a
management requirement frequently persists for a
measure of the overall process maturity. The over-
all REGPG maturity assessment is designed to sat-
isfy this requirement. It serves as a rough indicator
of how mature a requirements process is in the con-
text of wider SPI programs.

The scheme is based on a combination of em-
pirical data, analysis of common practice, and what
we know about the cost and utility of the individual
practices. It was formed by the Reaims industrial
partners’ experience of addressing requirements
process weaknesses. Their cumulative experiences
show the requirements practices that are consistent
with each maturity level. We used this experience

M a r c h / A p r i l  1 9 9 9 I E E E  S o f t w a r e 8 3

Nuts

Nuts

B
o

lts

B
o

lt
s

Table 2
Assessment Scores and Maturity

Maturity Level Assessment Score
Initial Less than 55 in the basic guidelines

Repeatable Above 55 in the basic guidelines but less

than 40 in the intermediate and advanced

guidelines

Defined More than 85 in the basic guidelines and

more than 40 in the intermediate and

advanced guidelines

.



to refine the classification scheme into reasonable,
ball-park figures for most scenarios. It shows the
broad characteristics of processes at each level.

There are 36 basic practices. In a typical re-
peatable process, most of the basic practices
defining organizational procedures or documen-
tation standards are standardized, with many of
the remaining basic practices in normal or discre-
tionary use. A defined process, by contrast, re-
quires more systematic support provided by the
21 intermediate practices. A typical organization
with a defined process might have standardized
appropriate modeling methods and requirements

management tools. It will also be capable of se-
lecting and applying new intermediate practices
and even some advanced practices.

Where requirements handling problems are evi-
dent, the improvement exercise will seek to address
them. Problems are not always evident, however, and
it may take some detective work to trace product prob-
lems back to the requirements process. Regardless of
the problems identified, the improvement goals must
be realistic. It won’t be possible to completely elimi-
nate requirements rework, but it is reasonable to aim
for a 20 percent reduction in the number of reworked
requirements in each improvement cycle. Achieving
this requires establishing causality between the evi-
dent problems and the weaknesses discovered in the
process. The improvement effort should focus on the
poorly supported process activities that are suspected
of contributing to the problems. The good practice
guidelines are designed to help select and prioritize
which good practices to adopt.

Process improvement is not a one-step process.
Even addressing the most urgent process problems
may take several improvement cycles since good
practice must be introduced incrementally and its
performance verified. New practices will need bed-
ding in, particularly when staff must be trained or
long-established working practice must be
changed. The operation of the new practices should
be monitored. Feedback on how well they work
should be collected to verify expectations, to assess
the impact on the improvement goals, and to help
tune the process for efficiency.

Scoping Future Practices

The REGPG is not intended to provide revolu-
tionary solutions to requirements engineering. We
don’t think that practical revolutionary solutions
exist. However, there is a body of wisdom locked up
in existing standards, organizational experience, and
applied research work that hasn’t been dissemi-
nated in a form easy to evaluate or adopt. Reaims
released REGPG as a first step toward raising the
state of the practice.

At the British Computer Society Requirements
Engineering Special Interest Group meeting at the

University of York on 4 February
1998, Andy Vickers observed that
while most researchers view re-
quirements engineering as a
problem of product complexity,
the most pressing problems
faced by industrial practitioners

arise from organizational complexity, which is fun-
damentally a process issue. If the requirements
process cannot cope with changing requirements
or large volumes of documentation, then projects
will fail. We believe that the basic practices that form
the mainstay of progression from initial to repeat-
able requirements processes offer the greatest lever-
age on organizational complexity.

Although the REGPG includes a CMM-like im-
provement framework, it is not intended for ac-
creditation. Industry’s enthusiasm for SPI, however,
suggests a growing trend for internally driven SPI
programs where accreditation is not the goal. We
tried to exploit this by adopting an improvement
framework that helps orient requirements process
improvement with other SPI initiatives. The current
paucity of accepted standards in requirements en-
gineering led us to design our improvement model
to accommodate a wide spectrum of views and
practices. Hence, the REGPG seeks to initiate the con-
solidation of industrial requirements engineering
practices rather than to prescribe a standard.

REGPG has had a number of different effects on
the Reaims industrial partners’organizations,

and other organizations through dissemination by
the Reaims partners. It met its original goal of com-
plementing their SPI programs by, for example,
helping to meet requirements management pre-
requisites that are only implicit in the CMM level 2
KPA. It has also helped lay the foundation for the in-
tegration of the methods and tools developed by

8 4 I E E E  S o f t w a r e M a r c h / A p r i l  1 9 9 9

Nuts

Nuts

B
o

lts

B
o

lt
s

The REGPG seeks to initiate the consolidation
of industrial requirements engineering 

practices rather than to prescribe a standard.

.



Reaims. Its most significant effect, however, has
been to raise management awareness of the im-
portance of requirements engineering to an orga-
nization’s strategic cost and quality goals.

Few organizations can afford to radically change
their existing requirements processes. The advan-
tage of the REGPG is that it allows incremental im-
provement by matching the most effective mea-
sures with the most pressing problems. ❖

ACKNOWLEDGMENTS
We would like to thank all the Reaims partners: GEC-

Alsthom Transport, Adelard, Aerospaciale Avions, Aero-
spaciale Protection Systems (APSYS), Digilog, TÜVit, and the
University of Manchester. We are also grateful to the re-
viewers, whose comments have improved this article.

REFERENCES
1. W. Humphrey, Managing the Software Process, Addison

Wesley Longman, Reading, Mass.,1989.

2. S. Zahran, Software Process Improvement: Practical Guidelines
for Business Success, Addison Wesley Longman, Reading,
Mass.,1998.

3. M. Paulk et al., Capability Maturity Model for Software, Version
1.1, CMU/SEI-93-TR-24, Software Eng. Inst., Pittsburgh, Pa., 1993.

4. R. Bate et al., A Systems Engineering Capability Maturity Model,
Version 1.1, CMU/SEI-95-MM-03, Software Eng. Inst.,
Pittsburgh, Pa., 841993.

5. M. Diaz and J. Sligo, “How Software Process Improvement
Helped Motorola,” IEEE Software, Sept./Oct. 1997, pp. 89-96.

6. A. Hutchings and S. Knox, “Creating Products Customers
Demand,” Comm. ACM, Vol. 38, No. 5, 1995, pp. 72-80.

7. I. Sommerville et al., “Viewpoints for Requirements Elicitation:
A Practical Approach,” Proc. 3rd Int’l Conf. Requirements Eng.,
IEEE Computer Soc. Press, Los Alamitos, Calif., 1998, pp. 74-81.

8. P. Morris et al., “Requirements Engineering and Industrial
Uptake,” Proc. 3rd Int’l Conf. Requirements Eng., IEEE
Computer Soc. Press, Los Alamitos, Calif., 1998, pp. 130-137.

9. I. Sommerville and P. Sawyer, Requirements Engineering—A
Good Practice Guide, John Wiley & Sons, New York, 1997.

10. C. Mazza et al., Software Engineering Standards, Prentice Hall,
Upper Saddle River, N.J., 1994.

11. M. Lubars et al., “A Review of the State of the Practice in
Requirements Modeling,” Proc. IEEE Int’l Symp. Requirements
Eng., IEEE Computer Soc. Press, Los Alamitos, Calif., 1993, 
pp. 2-14.

12. K. El Eman and N. Madhavji, “Measuring the Success of
Requirements Engineering Processes,” Proc. 2nd IEEE Int’l
Symp. Requirements Eng., IEEE Computer Soc. Press, Los
Alamitos, Calif., 1995, pp. 204-211.

13. M. Konrad and M. Paulk, “An Overview of SPICE’s Model for
Process Management,” Proc. 5th Int’l Conf. Software Quality,
Am. Soc. for Quality, Milwaukee, Wisc., 1995, pp. 291-301.

M a r c h / A p r i l  1 9 9 9 I E E E  S o f t w a r e 8 5

Nuts

Nuts

B
o

lts

B
o

lt
s

Pete Sawyer is a senior lecturer in the
Computing Department at Lancaster
University, where he has held a variety of
positions since 1986. He is currently
spending six months working at the
Institute for Systems, Informatics, and
Safety at the European Commission’s
Joint Research Centre in Ispra, Italy. His

principal research interests are requirements engineering, de-
pendable systems, and software process improvement. 

Sawyer holds a BSc and PhD in computer science from
Lancaster University. He is a member of the IEEE Computer
Society and the ACM.

Ian Sommerville is professor of
computer science and chair of the
Computing Department at Lancaster
University. He has been involved in soft-
ware engineering research and teaching
for the past 20 years and his current re-
search interests include requirements
engineering, system evolution, and

human and social factors in systems design.
Sommerville received a BSc in physics from Strathclyde

University and an MSc and PhD from St. Andrews University.
He is a member of the ACM, the IEEE Computer Society, and
the British Computer Society, and is a fellow of the IEE.

Stephen Viller is a research fellow in the
Computing Department at Lancaster
University. His research interests are in
the fields of requirements engineering
and computer-supported cooperative
work, focusing on improving support
for the design of cooperative systems.
He is currently completing his PhD on a

human-sciences-informed process improvement method
directed at the requirements process for safety-critical sys-
tems design.

Viller has a BSc in computation from the University of
Manchester Institute of Science and Technology and an MSc
in cognitive science from the University of Manchester. He is a
member of the IEEE Computer Society and the ACM.

About the Authors

Address questions about this article to Sawyer at the Computing
Department, Lancaster University, Lancaster, UK, LA1 4YR; e-mail
sawyer@comp.lancs.ac.uk.

.


