
Architectural support for cooperative multi-user
interfaces

Richard Bentley, Tom Rodden, Pete Sawyer, Ian Sommerville

Computing Department
Lancaster University
Lancaster LA1 4YR
UK

Tel: +44 524 65201 x3119
Fax: +44 524 593608
Email: dik@comp.lancs.ac.uk

Introduction

Computer support for cooperative work requires the construction of applications which

support interaction by multiple users. These applications exploit multi-user interfaces to

promote their cooperative use by a community of users. Users may be distributed across a

number of locations and the associated interfaces run across a number of workstations. The

need to support user interface execution in a distributed environment has resulted in a

merging of the concerns of user interface software and distributed systems. A major focus

in CSCW is the development of models and tools to support the construction of these

distributed, multi-user interfaces and the development of associated software architectures.

This paper is concerned with the design and development of a software architecture that

provides mechanisms to support rapid multi-user interface construction and distributed user

interface management. The developed architecture addresses the demands of both user

interface systems and the constraints of the distributed infrastructure. A central concern is

the need for rapid user interface prototyping resulting from the highly dynamic and flexible

nature of cooperative work. Rapid prototyping requires mechanisms which make the

information that determines interface configuration visible, accessible and tailorable.

In this paper, we examine the implications of rapid prototyping for distributed multi-user

interface architectures. We also discuss the demands of multi-user interface management,

and the problems of meeting these in a distributed environment. Finally we present a multi-

user interface architecture which has been designed to address these problems, and

demonstrate the architecture's suitability by discussing its implementation in a multi-user

interface prototyping environment.

The multi-user interface architecture reported here has been developed as part of a project

investigating support for the cooperative work of air traffic controllers. The project has

made extensive use of prolonged ethnographic investigation to uncover the nature of

cooperation in air traffic control (interested readers are referred to [1] for a full discussion

Paper #930705: Architectural support for cooperative multi-user interfaces page 2

of the empirical findings). The aim of the architecture is to support an environment which

allows a multi-disciplinary team to experiment with a wide range of alternate user interface

designs for air traffic controllers. Examples used to illustrate the architecture in this paper

are drawn from this domain.

Multi-user interfaces

Many computer systems already exist which support simultaneous interaction by more than

one user. Multi-user operating systems, office information systems and databases are all

examples of mature software technology which support multiple users. Although these

systems support multi-user interaction they do so in manner which prohibits cooperation.

Most existing multi-user systems present the illusion to each user that they are the only

user of the system. The result is that users are unaware of the presence of others as a

'protective wall' is maintained around them hiding other users' activities.

In contrast, cooperative applications need to provide users with an awareness of the

activities of others to support and encourage cooperation to take place. For these

applications, the purpose of a multi-user interface is to establish and maintain a common

context. This context allows the activities of one user to be reflected on other users screens

and is supported by sharing application information. This sharing is the principle means of

promoting cooperation, and the real-time presentation and manipulation of shared

information is the main function of cooperative, multi-user interfaces.

Different forms of cooperative work require varying levels of awareness between users and

place different demands on the strength of sharing required. The extent to which multi-user

interfaces support this sharing through the propagation of activities is termed interface

coupling; the greater the level of awareness between users the closer the interface coupling.

Three levels of sharing can be identified in current cooperative systems which correspond

to different degrees of user interface coupling:

• Presentation level sharing (Tight coupling): Each user is presented with the same

display of the same subset of a common information space. When this presentation

is changed in any way, presentations on all display screens are updated. This level

of sharing is also known as What-you-see-is-what-I-see (WYSIWIS).

• View level sharing (Medium coupling): Each user has presentations of the same

subset of an information space but the actual presentations may be different. For

example, different users may simultaneously interact with tabular or graphical

displays of the same data.

Paper #930705: Architectural support for cooperative multi-user interfaces page 3

• Object level sharing (Loose coupling): Each user has presentations of different

(possibly overlapping) subsets of the information space. For example, a group of

users may each edit different sections of the same document.

Lauwers and Lantz [2] describe two approaches to developing multi-user interfaces. The

first allows existing single-user applications to be shared in a collaboration-transparent

manner, so that no facilities for handling collaboration are embedded in the application

itself. The second involves the development of special purpose collaboration-aware

applications which explicitly recognise the cooperation involved. Each of these approaches

has different implications for sharing (see sidebar 1).

SIDEBAR 1: Collaboration transparent and aware user interfaces

To construct a collaboration-aware application, the developer must make decisions about

how end-users require shared information to be presented and how they manipulate these

representations. Although providing the flexibility to support different forms of

presentation and interaction, these decisions are often embedded within the application

itself. This fixes these design decisions within the application and they become amend a

future date. These problems have led to a number of researchers arguing that although

collaboration awareness is necessary for cooperative systems, it should not be embedded in

the application. Rather, frameworks are required which manage the visualisation and

manipulation of information outside the application itself.

Such frameworks hide the physical distribution of components from the application

developer and allow the visualisation and interaction policies to be tailored independently

of the application. This separation promotes rapid prototyping by significantly reducing the

effort required to amend the interface. This separation is advocated in the purely centralised

Rendezvous system [3], one of the best developed examples of such a CSCW framework.

Multi-user interface requirements

Multi-user interfaces need to provide a number of facilities. Before considering multi-user

interface development and the features of supporting infrastructures it is worth reviewing

two key end-user needs which constrain the development of the supporting infrastructure.

Support for multiple displays

Cooperating users access shared information through individual workstations often

supplemented by informal communication. Given the reliance of cooperating users on an

awareness of the activities of others, a multi-user interface architecture should:

• Allow the set of cooperative displays to be dynamically changed with different

workstations being easily added and removed.

Paper #930705: Architectural support for cooperative multi-user interfaces page 4

• Allow the manipulation of shared information entities on different screens.

• Support the visualisation of shared entities across different users' screens.

• Support the propagation of interaction across users' screens.

The need for rapid prototyping within cooperative systems development is such that these

facilities need to be provided through a set of robust and readily understood mechanisms

which allow reconfiguration by both developers and users.

Support for different views

Cooperating users may require information to be presented in different ways corresponding

to different levels of sharing. Where users must engage in tightly-coupled cooperative

work, it may be necessary to share information at the presentation level. However, sharing

is also required at both view and object levels to support the differing requirements of end-

users and the tasks they undertake. Thus the architecture must be able to support sharing at

presentation, view and object levels. As a result the supporting architecture should:-

• Allow the definition of different interactive representations of shared entities.

• Maintain these different representations as underlying entities change.

• Allow the updating of entities through interaction with these representations.

Multi-user interface systems are used within distributed environments to support

simultaneous interaction by a number of end-users. Consequently, it is important that such

systems are sensitive to the properties of the supporting distributed infrastructures.

Consistency between displays of the shared information and the information itself must be

maintained and mechanisms must be provided to handle the propagation of change.

Support for multi-user interface development

The task of constructing a user interface is complex and requires skills from a number of

disciplines. Most existing approaches to developing cooperative systems have tended to

consider user interface development as a task for application developers and have provided

little support for user-centred development and interface tailoring. The manner in which

interfaces are shared is often pre-determined and embedded within the application. The

focus of cooperative interface development is on shared information so support should

allow experimentation with different visualisation and interaction techniques. As a result,

any architecture to support rapid prototyping requires details of the interaction and

presentation to be made explicit and de-coupled from the application.

SIDEBAR 2: Representation in the user interface

Paper #930705: Architectural support for cooperative multi-user interfaces page 5

As well as requiring the rapid refinement and modification of alternative interface designs,

prototyping also involves the evaluation of the user interface in realistic settings. Results

from such assessment feed back into the refinement process to guide future development

(see sidebar 2). Mechanisms to execute prototype interface designs are therefore required

in addition to high-level development tools which support interface construction. These

should make visible the policies for visualising and interacting with shared information to

allow high-level tailoring and rapid revision of user interface designs.

The principles supporting user interface design have emerged from considering a single

end-user on a single machine, performing discrete and individual tasks. A corresponding

set of accepted principles have yet to emerge for multi-user interface development.

However, a number of key features must be supported to promote effective multi-user

interface construction.

Separation

An accepted feature of single user interface architectures is the separation of user interface

and application components. This arrangement has many advantages which include:

• Portability: the application may be made portable while the user interface is device

dependent

• Re-usability: both user interface and application can be reused independently

• Multiple interfaces: the same application can be accessed from different user

interfaces

• Customisation: the user interface can be tailored in isolation by both developer and

user

• Adaptability: The design decisions embedded within applications can be identified

and made accessible to allow ease of modification

Logical separation is desirable for single-user interfaces but the multi-user case requires

such separation to support the alternative visualisations needed for view-level sharing [4].

In addition, physical separation provides a degree of fault tolerance; a user interface

process may crash without crashing other user interface or application processes. Physical

separation also allows execution of interface and application processes on different

machines providing local feedback and supporting a high degree of user adaptation in a

distributed setting.

Feedback

Most operations require feedback from the display in response to user actions. The form of

this feedback may depend on the semantics of the underlying application. When the

application and user interface components reside on different machines, the feedback loop

Paper #930705: Architectural support for cooperative multi-user interfaces page 6

involves transmission over a network and it may therefore be hard to achieve acceptable

response times.

Feedthrough

Besides providing rapid feedback, multi-user interfaces also need to support rapid

feedthrough. Feedthrough means updating users' display screens in response to actions

performed by other users working on different machines. The importance of this principle

is dependent upon the granularity of the updates broadcast to other users. In tightly-coupled

cooperative activities, such as group drawing, the process of creating an object with

associated explanation and gesturing is very often as important than the resulting object

itself [5]. For applications requiring such tight coupling the granularity of updates is very

small and rapid update feedthrough is vital. For other, more loosely-coupled applications, it

may be possible to significantly reduce the granularity of updates.

End-user tailoring

When data is shared, end-users may adopt different methods of working even when

performing similar tasks. In such situations, the user interface designer cannot provide

interface representations which are appropriate to all users in all task contexts. One solution

is to allow users to tailor their interface to suit their own requirements.

These principles, in combination with the requirements of cooperative interfaces, have

motivated our design of a novel architecture to support multi-user interfaces. A distinctive

feature of these multi-user interfaces is that they exist within distributed environments.

Consequently, it is important that any supporting architecture is also sensitive to the

properties of the underlying distributed infrastructure.

The supporting infrastructure

The construction of multi-user interfaces requires the needs of the interface to be met in a

manner which is sensitive to the properties of the supporting infrastructure. To implement

multi-user interfaces requires underlying support to manage the interface in execution. This

support must address problems of distributed computing, such as network delay, loading

and latency, failure of both network and machines and data consistency. The basis for

providing such support is a computational or programming architecture.

Architectures for multi-user interfaces originate from distributed systems research. It is

possible to identify two architectural extremes of pure centralisation and replication,

between which lie a continuum of hybrid arrangements. The technological factors of

implementing cooperative systems are mainly independent of the architecture - shared

window systems have been built on top of both replicated and centralised architectures.

Paper #930705: Architectural support for cooperative multi-user interfaces page 7

However, the properties of the supporting architecture delimits many of the features of the

cooperative interfaces they support.

Centralised architectures

In a pure centralised arrangement, also known as the client-server architecture, a central

server program handles all user input events and display output events which are routed by

way of local client programs. Local workstations act as graphical terminals and window

servers. A variant is the master-slave architecture where one client is merged with the

server and all other nodes run clients.

The primary advantage of the client-server approach is its simplicity; application and all

data are held centrally simplifying access management and data consistency.

Implementation is easier still when using a networked window system such as X Windows.

This approach is used within existing shared window systems such as shared X [6] and is

also widely adopted within computer conferencing systems [7]. It is relatively easy to

support WYSIWIS (presentation level) sharing using a centralised architecture as the

server can replicate display directives to all clients.

It is also possible to support view level sharing using the client-server approach. For

example, the Rendezvous system, introduced above, is based on a client-server architecture

with all user interaction and display management handled centrally by the server. Each user

has an associated view process which interprets input events and display directives. In this

way, visualisation and interaction are detached from the information being shared as each

view process can interpret events and display directives differently, supporting alternative

presentations of information.

The embedding of the sharing policy in the central server component orients tailoring

towards the user interface developer. Rendezvous, for example, does not make the sharing

policy visible and therefore does not support end-user tailoring. Providing support for end-

users to tailor their own interface may be important if individual methods of working are to

be supported. The centralised architecture is also vulnerable to failure of the central node

(or the network connections to it), and delayed feedback as all input and output events must

travel over a network.

Replicated architectures

At the other extreme to a centralised approach, a replicated architecture maintains exact

copies or replicas of the application on each workstation. Each replica handles screen

management and feedback locally and must broadcast any change in application data to all

other replicas to maintain data and interface consistency. Local management of the display

means that different views are easily supported and end-user interface tailoring is relatively

Paper #930705: Architectural support for cooperative multi-user interfaces page 8

easy to provide. Each replica can adapt its visualisation and interaction policies to an end-

user's preferences.

The major difficulties with replicated architectures concern synchronisation and data

consistency. Users can perform actions simultaneously which are executed locally before

being broadcast to other machines. If these actions conflict - for example one user deletes a

selected object in a WYSIWIS group drawing program at the same time as a second user

changes the selection to a different object - inconsistent interfaces can result due to events

arriving in a different order at each machine.

To prevent such race conditions requires complex synchronisation algorithms. The

standard solution in distributed systems is to use a global clock to timestamp each event

and then to rollback should inconsistency arise, replaying events in temporal order. This is

unacceptable for multi-user interfaces where display screens would already have been

updated and alternatives based on transforming updates to prevent rollback have been

developed [8].

A further problem occurs when users wish to join a group session after it has started. This

dynamic registration is relatively straightforward under a centralised approach as new

clients need only contact the central server. The server can then broadcast the current state

of the application to bring the new client up to date. Using a replicated approach, however,

a new replica must contact all other replicas to tell them that it needs to receive any

updates. This means that new replicas must know or can find out the locations of all other

current replicas.

Hybrid architectures

Both pure centralised and pure replicated architectures offer benefits and limitations. As

neither of these architectures fully meet the requirements of multi-user interface systems a

hybrid solution is required where appropriate portions of the system are either centralised

or replicated depending on the application requirements. A continuum of such hybrid

arrangements exists between the extremes of pure centralisation and replication. Each of

these supports the requirements for multi-user interfaces in different ways and with

different degrees of complexity.

Pure

Centralised

Architecture

Pure

Replicated

Architecture

easy to implement
easy to add/remove displays
easy to keep consistent

hard to implement

hard to add/remove displays

hard to keep consistent

hard to provide different levels of sharing

hard to provide rapid feedback

easy to provide different levels of sharing

easy to provide rapid feedback

Figure 1 Summary of characteristics of distributed computational architectures

Paper #930705: Architectural support for cooperative multi-user interfaces page 9

Our objective was to develop an infrastructure which meets the needs of multi-user

interfaces in a such a way that effective run-time support is provided along with facilities to

promote tailorability. Our architecture is based on autonomous agents that embody the

details of information visualisation and interaction necessary to manage multi-user

interfaces independently of the behavioural semantics of the application. The architecture is

a hybrid one with shared information kept consistent through a centralised component

while the presentation and interaction semantics are replicated and held in distributed

display agents.

User Display Agents

Our architecture considers individual user's information displays as autonomous entities

with properties that can be tailored by both interface developers and users. The states of

these entities characterise the way information is presented to users, who interact directly

with these entities to update the underlying information. Such updates are immediately

propagated to other users' displays to maintain consistency. We refer to these entities as

User Display agents and the parts of a user's screen managed by an agent is called a User

Display (UD).

In our cooperative setting, users browsing and manipulating a shared information space

each hold a working set of UD agents. Each agent manages one display of the shared

information and can present this UD in multiple screen windows (figure 2). An agent can

be a member of a number of working sets and the UD it manages can therefore be

displayed on multiple users' screens. Agents can be added to and removed from working

sets as required.

Shared

Information

Space

User Environments

working set

of UD agents

working set

of UD agents

working set

of UD agents

display screen

250

180

320

250

180

320

x

y

z

Figure 2 Working sets of User Display agents cooperating via a shared information space

Paper #930705: Architectural support for cooperative multi-user interfaces page 10

This arrangement supports all three levels of interface coupling identified previously. As

agents can display the UDs they manage on multiple screens, it is possible to support

presentation-level or WYSIWIS information sharing. Different UDs can be designed which

represent the same information in different ways to support sharing at the view-level.

Sharing at the object-level is possible as users can have completely different UDs managed

by the UD agents in their working sets.

This mechanism separates what is being shared (the application information) from the

method of sharing (the presentation and means of interaction with the information). The

method of sharing can therefore be tailored independently of the application, as UD agents

support collaboration-aware sharing without requiring the application to handle the sharing

mechanisms itself. The rest of this paper discusses the properties of UDs and the UD agent

architecture to show how rapid user interface construction and distributed management are

supported.

Properties of a User Display

User Displays support the sharing of information between multiple users and allow users to

update information through interaction with local representations. The need to support

different levels of sharing and degrees of interface coupling highlights three effects of

changes in the state of shared information:

• FOCUS: Cooperating users may only be interested in a subset of the information

entities from the shared information space. Entity representations may therefore

need to be added to or removed from users' displays dynamically.

• REPRESENTATION: Whilst cooperating users may require the same information,

the way this is represented may vary depending on the tasks being supported and

the level of experience and domain knowledge of the user.

• POSITION: The spatial arrangement of entity representations on the user's screen

may provide information about relationships between entities. It may be necessary

to adjust the arrangement dynamically to reflect changes in these relationships.

An example of a UD is an interactive Radar display that presents the geographical position

of aircraft in a bounded portion of airspace on a two-dimensional display screen. Aircraft's

longitude and latitude data are mapped onto the x,y position of a 'blip' representing each

aircraft's location on the screen. These blips can contain information such as identification

codes and height information, and can be manipulated by the user to display additional

information about the aircraft they represent.

In terms of focus, visualisation and position, the process of modelling the Radar is quite

straightforward. The focus is concerned with the Radar's calibration (i.e. the portion of

airspace represented), the visualisation with the type of blip used to represent each aircraft

Paper #930705: Architectural support for cooperative multi-user interfaces page 11

and the position with the mapping from aircraft location to the position of corresponding

blips on the screen. Any change in location may cause changes in focus, visualisation

and/or position.

Components of a User Display

To reflect the emphasis on the display and manipulation of shared information entities, the

model of a UD directly realises the concepts of focus, representation and position. A UD is

described as a triple, comprising a Selection, a Presentation and a Composition:

• A Selection is a set of information entities dynamically chosen from an information

space according to Selection criteria. Selection criteria are predicates over entity

attributes and are specified by the interface designer. Selection criteria act as a

filter to pick out those entities which should be displayed. As the state of entities is

updated, the Selection changes accordingly.

• A Presentation is a set of Views used to represent entities in the Selection. A View

is a graphical representation which defines the appearance of a single entity, the

position and representation of that entities attributes and the means of interaction

by which the user can update the entity's state. Views are dynamically selected for

each entity through the application of the Presentation Criteria. These define a

filter for each View which an entity must pass to be represented by that View.

Changes in the state of an entity may require changes in the Presentation, i.e. the

selection of a different View to display it on the screen.

• A Composition is a set of positions which represent the spatial arrangement of

Views in the UD. These positions can be either absolute or relative to other Views.

As an entity's state changes, these positions may also have to change to remain

consistent with the arrangement defined in the Composition Criteria.

Using this model, one abstract definition of the Radar UD described above might be:

• Selection criteria: Aircraft longitude from x' to x'', latitude from y' to y''

• Presentation criteria: large blip for passenger aircraft, small blip for private

aircraft

• Composition criteria: Map longitude to x position, latitude to y position

The abstraction of UDs as autonomous entities allows multi-user interfaces to be

constructed as a federation of such entities, interacting and responding to changes in a

shared information space. Changes in the state of information entities potentially effects the

Selection, Presentation and Composition components of each UD. For example, a change

in the longitude of an aircraft may require a change in Selection or Composition of the

Radar UD described above.

Paper #930705: Architectural support for cooperative multi-user interfaces page 12

The encapsulation of both the definition criteria and the state of an information display in

an autonomous UD entity allows the tailoring of information displays without system re-

configuration. Any changes to definition criteria of a UD result in immediate computation

of the new state and the update of users' screens. This tailoring, re-computation and display

management is managed by the associated UD agent.

Maintaining User Displays

A UD agent can be a member of more than one users' working set to support presentation-

level or WYSIWIS information sharing. Each screen representation of the UD managed by

such an agent is affected by updates in the shared information space in exactly the same

way, and thus the effects of information updates on Selection, Presentation and

Composition need only be calculated once.

To support this each user may hold a copy or Surrogate of each UD agent as part of their

working sets. These Surrogates are minimal agents that hold only the current state of the

Selection, Presentation and Composition of the UD. The definition of the UD is held by the

Master UD agent which receives notification of relevant changes in the states of

information entities, uses the definition criteria to compute the effects on the UD and

informs each of its Surrogates of the new state (figure 3).

Object Store

Update Handler

250

180

320Surrogate

UD agent

250

180

320Surrogate

UD agent

Remote Workstations

Object Store

Server

Master UD agents

Figure 3 Master/Surrogate User Display agent arrangement

In our realisation of the agent architecture, shared information entities are held as objects

within an Object Store. All updates to the state of objects in the Object Store are handled

by the Object Store Server (OSS), illustrated in figure 3. This component also holds the

Master UD agents, allowing straightforward registration and de-registration of new users.

Machines can be added without other users' machines being informed, and need only

contact the OSS to register their existence, create the required Surrogates and establish

Paper #930705: Architectural support for cooperative multi-user interfaces page 13

links to the Master agents. A machine can de-register by informing the OSS that it no

longer wishes to receive update information.

The Master/Surrogate arrangement of UD agents allows local tailoring of information

displays without requiring system re-configuration. Local tailoring operations performed

on a window presenting a UD are retained by the Surrogate agent. When informed of

updates to the state of the UD by the Master, Surrogates can take into account these

operations before displaying the new state.

Consistency maintenance

Updates to shared information objects potentially affect the Selection, Presentation and

Composition components of each UD. For example, consider the definition of the Radar

UD described above; a change in an aircraft's position (latitude or longitude) may require it

to be added to or removed from the display or its blip representation to move. UD agents

must be aware of such updates so they can use the definition criteria to calculate effects on

the state of their UDs and maintain consistency with the shared information space.

There are two options for detecting changes in the state of information entities; agents can

periodically poll the information space, checking to see if it has changed, or information

objects can notify agents when changes occur. The former is inefficient when there are a

large number of information objects to be polled, whilst the latter requires each information

object either to record which agents are interested in it and be able to notify them whenever

it is updated, or to broadcast updates to all agents, many of which may not be effected by

the update.

The agent architecture uses a variant of the second option which does not place any

requirements on the information objects to notify UD agents of changes in state, and

therefore supports collaboration-transparency of the application being shared. All updates

to shared information objects are delivered to a component within the OSS known as the

Update Handler. This forwards these updates to the Object Store, as well as notifying the

UD agents potentially effected. Figure 4 illustrates this dispatching role of the Update

Handler, which ensures that only those UD agents interested in updates are actually

notified of them. Using this mechanism, the communication (and thus the cost) of

informing UD agents of updates is minimised.

Paper #930705: Architectural support for cooperative multi-user interfaces page 14

(1) entity: AC1

						attribute: longitude

						newValue: 50

(3) Who is interested

in longitude changes ?

(5) How does

this update

affect my UD ?

Update
Handler

UD agent

(Radar)
UD agent UD agent

radar update

(2) entity: AC1

						attribute: longitude

						newValue: 50

Object Store

(4) entity: AC1

						attribute: longitude

						newValue: 50

Figure 4 The dispatching role of the Update Handler

Whenever the user interface developer creates a new UD, a UD agent is automatically

created to manage it. The first task of this agent is to register with the Update Handler in

order to receive update information. As part of the registration process, agents must inform

the Update Handler of their interest set which it then uses to determine which updates

should be forwarded to the agent; for example, the Radar UD agent defined above will

register changes in longitude and latitude of aircraft objects as its interest set. Agents may

have to re-register their interest set should the interface developer modify the definition

criteria of their UDs, and de-register if their UDs are removed (prior to the agent itself

being destroyed).

This mechanism ensures that agents can maintain the consistency of their UDs with the

shared information whilst not being overloaded with irrelevant update notifications. The

filtering of updates by the Update Handler thus minimises the communication overhead

(and therefore the cost) of notification and allows applications to remain unaware of the

agents that manage representations of their data, supporting collaboration-transparency.

Supporting multiple Views

Shared information objects can be represented in different UDs by different Views. As

updates occur, these Views must also be updated to remain consistent with the entities they

represent. To maintain this consistency, Views are linked to the objects they represent for

each UD, as in figure 5. These links allow update information to flow between Views and

shared information objects when the end-user modifies a View, and in the opposite

direction when objects are changed through other end-users' interactions or by external

updates. As shown in figure 5, each object in a UD's Selection may have links between

itself and more than one View.

Paper #930705: Architectural support for cooperative multi-user interfaces page 15

object set

UD agent

(Radar)

AC1

AC3

AC2

AC1

AC2

AC3

AC1

AC2

AC3

display screen

state updates

Figure 5 Links between Views and shared information objects

To minimise the communication between OSS and remote machines, the agent architecture

adopts a local caching mechanism where subsets of the shared information objects

maintained in the Object Store are cloned and held in a local cache (figure 6). Updates to

shared information objects are not routed through the UD agents but are sent to the caches

by the Update Handler, which maintains a table of the locations of all object clones. The

links between the Update Handler and the local caches are bi-directional to allow the

Update Handler to receive updates in the states of clones resulting from end-user

interaction with object Views.

z

y

x

x

a

b

c

links to

Master

UD agents

display screen

User Environment

local cache

links to

Update

Handler

y x

b

c
z

a

working set

of Surrogate

UD agents

Figure 6 Local caching mechanism

Views are therefore linked directly to clones of shared information objects. Should the state

of a clone be updated by end-user interaction with a View, the local cache informs the

Update Handler of the change. The Update Handler can then notify the cooperative

application of the update, selectively send updates to caches which maintain a clone of the

Paper #930705: Architectural support for cooperative multi-user interfaces page 16

affected object (and thus update all the object's Views), and inform the relevant Master UD

agents in case the update requires changes in the states of any UDs.

The local caching mechanism eliminates needless communication between the OSS and

remote machines, as well as removing the need for mechanisms to maintain object-View

links across machines. By recording the location of object clones the Update Handler is

able to ensure consistency of local caches whilst filtering update information.

The UD model and agent architecture described here form the basis for a prototyping

environment called MEAD (see sidebar 3). The architecture is flexible enough to allow

View and UD definitions to be added, removed and modified in the OSS whilst Slave

machines are connected, without requiring suspension of user activities. The agent

architecture can therefore support rapid modification and execution of alternative user

interface designs necessary to meet the requirements of rapid prototyping.

SIDEBAR 3: The MEAD multi-user interface prototyping environment

Summary and conclusions

The development of multi-user interfaces is a central concern to CSCW. Our limited

knowledge of the nature of group work and the lack of proven interface principles ensures

that rapid prototyping is essential to ensure the development of effective user interfaces.

Prototyping of this form demands a robust a set of mechanisms to support user interface

definition which can be readily made available to developers and users alike.

This paper has presented an architecture which supports multi-user interfaces and allows

the rapid construction of user interfaces to support prototyping as a means of user interface

development. The hybrid architecture is based around the concepts of User Displays which

are managed by autonomous User Display agents. User Displays are defined in terms of the

relationship between different presentations of shared objects. This definition can be

presented to both users and developers and dynamically altered at run time to allow the

construction of different multi-user interfaces.

The developed architecture provides the basis for the MEAD rapid prototyping

environment for multi-user interfaces. The environment has been constructed as part of a

project to support the development of user interface displays for air traffic controllers. The

environment exploits the natural centralisation of cooperative applications within a hybrid

architecture which masks many of the complexities of the underlying distributed systems.

In contrast to the properties of distributed systems, the developer is presented with a set of

simple mechanisms which determine the properties of the multi-user interface. These

mechanisms provide the basis for the construction of a wide range of cooperative multi-

user interfaces.

Paper #930705: Architectural support for cooperative multi-user interfaces page 17

References
[1] Bentley, R., Rodden, T., Sawyer, P., Sommerville, I., Hughes, J., Randall, D., Shapiro,

D., Ethnographically informed systems design for Air Traffic Control, Proceedings of
the Conference on Computer-Supported Cooperative Work (CSCW'92), October 31-
November 4, 1992, Toronto, Canada, ACM Press, pp 123-130

[2] Lauwers, J. C., Lantz, K. A., Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems,
Proceedings of CHI '90, April 1-5, 1990, Seattle, Washington, ACM Press, pp 303-311

[3] Patterson, J. F., Hill, R. D., Rohall, S. L., Meeks, W. S., Rendezvous: an architecture
for synchronous multi-user applications, Proceedings of the Conference on Computer-
Supported Cooperative Work (CSCW '90), October 7-10, 1990, Los Angeles,
California, ACM Press, pp 317-328

[4] Patterson, J. F., Comparing the programming demands of single-user and multi-user
applications, Proceedings of the Conference on User Interface Software Technology
(UIST'91), November 11-13, 1991, Hilton Head, South Carolina, ACM Press, pp 87-
94

[5] Tang, J., Findings from observational studies of collaborative work, International
Journal of Man-Machines Studies, 3(4), pp 143-160

[6] Gust, P., Shared X: X in a distributed group work environment, presented at the 2nd
Annual X conference, MIT, Boston, January 1988

[7] Crowley, T., Milazzo, P., Baker, E., Forsdick, H., Tomlinson, R., MMConf: an
infrastructure for building shared multimedia applications, Proceedings of the
Conference on Computer-Supported Cooperative Work (CSCW '90), October 7-10,
1990, Los Angeles, California, ACM Press, pp 329-342

[8] Ellis, C. A.,Gibbs, S.J., Concurrency control in groupware systems, Proceedings of
the 1989 ACM SIGMOD International Conference on the Management of Data, 1989,
Portland, Oregon, ACM Press, pp 399-407

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 1) page 18

SIDEBAR 1 : Collaboration transparent and aware user interfaces

Whilst a range of different multi-user interfaces have been developed, each providing a

variety of functions and different levels of support for cooperative work, two broad classes

of multi-user interface are important. The first approach allows existing single-user

applications to be used cooperatively by a number of users. The second involves the

development of special purpose applications which handle collaboration explicitly.

Lauwers and Lantz [1] identify these approaches as collaboration transparency and

collaboration awareness respectively.

Many applications exist which can easily be modified to run in a multi-user setting.

Allowing sharing of these applications provides access for geographically dispersed

participants to sophisticated tools to facilitate group work. This observation has led to the

development of systems which support the transparent sharing of applications, often called

shared applications.

These approaches were developed to allow the sharing of each user's screen with others. As

windowing systems have developed, this shared screen approach has been extended to

permit the sharing of individual windows. The logical structure of such a shared window

system is shown in Figure 1.

draw on

window X''

floor

control

Window

System

User

Window

System

User

Conference

Agent

Application Application

Window

System

User

Window

System

User

Conference

Agent

Application Application

application

command

application

command

draw on

window X'

draw on window X

Figure 1 Logical a) output and b) input architecture of a shared window system

A central component or conference agent is responsible for multiplexing display output

and de-multiplexing user input so that the application deals with a single stream of output

and input events. The application is unaware of the presence of more than one user and

only expects a single stream of input events. To avoid confusion users must take turns in

interacting with the application - this is achieved by allowing only one user to interact with

the application at any given time (as in figure 1b). Borrowing from the terminology of

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 1) page 19

business meetings, this user is said to have control of the floor. Control of the floor must be

passed to other users before they can interact with the application.

Floor control is the responsibility of the central conference agent which Greenberg

identifies as its chair management role [2]. Unsurprisingly, the focus of much of the work

in supporting collaboration transparency has focused on floor control, such as the

development of different turn-taking protocols and floor control policies.

In contrast to the transparent approach outlined above, collaboration aware solutions

provide facilities to explicitly manage the sharing of information, allowing sharing to be

presented in a variety of different ways to different users. Often the management of each

user's sharing is embedded in the application itself. Applications shared in this way are

referred to as multi-user applications.

The logical centralisation of user interface management embeds a set of decisions as to

how information is presented and modified within the application. This definition is often

inaccessible and this lack of visibility inhibits tailoring of the sharing policy. In addition,

the lack of a supporting infrastructure requires most collaboration aware applications to be

constructed from scratch. As a result, this approach to developing cooperative systems has

tended to be less popular than the collaboration transparent approach outlined above.

However, the flexibility needed by cooperative systems is such that collaboration aware

arrangements are becoming more prominent.

The multi-user interfaces supported

The problems of developing multi-user interfaces were initially highlighted in the COLAB

project at Xerox PARC [3], which examined the development of appropriate supporting

facilities for real-time co-located meetings. As part of the project a number of applications

were developed which allowed the effects of each user's actions to be shared across a

number of displays. Developing on desktop publishing terminology, the COLAB project

called this principle What You See Is What I See (WYSIWIS) and saw it as analogous to

the use of WYSIWYG in editor systems.

Initially each user's complete display screen was shared, however this was found to be

confusing and distracting for the users involved. To resolve this only portions of the

display were shared and a separation was established between shared and private portions

of users' displays. This arrangement is referred to as relaxed WYSIWIS while the initial

COLAB setting is termed strict WYSIWIS.

Collaboration transparent systems replicate display output and adopt an approach based on

sharing the presentation of an application. Multi-user interfaces for such systems therefore

support the WYSIWIS sharing of applications, which gives each user a 'common frame of

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 1) page 20

reference' [1]. The removal of this common context can cause problems when users engage

in tightly-coupled group work.

However, although some shared window systems relax the coupling of the interface, a

fundamental problem with such systems is their inability to support anything other than

WYSIWIS sharing of the information itself. Where end-users have widely differing

knowledge, roles and attributes, this can be overly restrictive. A view used by a technical

person, for example, may have too much detail for effective viewing by (say) a manager

[2].

Where different users engaged in different tasks must access and manipulate shared data,

the development of multi-user interfaces cannot be based on purely WYSIWIS sharing.

Different users may require different representations of the same information, or may be

concerned with different information entirely. This level of flexibility cannot be provided

by collaboration transparent applications as it requires the system to exploit knowledge

concerning the shared task been undertaken by the users. This form of interface is provided

by collaboration aware applications.

Although they can and often have supported strict WYSIWIS interaction (as with the

COLAB system for example), the advantages offered by collaboration aware systems are

most evident in the provision of a range of alternative application presentations across a

community of users. To contrast this arrangement with the work of COLAB, Dewan [4]

terms this style of sharing What You See Is Not What I See or WYSINWIS.

[1] Lauwers, J. C., Lantz, K. A., Collaboration awareness in support of collaboration
transparency: Requirements for the next generation of shared window systems,
Proceedings of CHI '90, April 1-5, 1990, Seattle, Washington, ACM Press, pp 303-
311

[2] Greenberg, S., Sharing views and interactions with single-user applications,
Proceedings of the ACM/IEEE Conference on Office Information Systems, 1990,
Cambridge, Mass., ACM Press, pp 227-237

[3] Stefik, M., Bobrow, D., Foster, G., Lanning, S., Tatar, D., WYSIWIS revised: early
experiences with multi-user interfaces, ACM Transactions on Office Information
Systems, 5(2), pp 147-167, 1987

[4] Dewan, P., Principles of designing multi-user user interface development
environments, Proceedings of the 5th IFIP Working Conference. on Engineering for
HCI, J. Larson and C. Unger (Eds), August 10-14, 1992, Ellivuori, Finland, pp 35-48

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 2) page 21

SIDEBAR 2: Representation in the user interface

In designing a user interface for an application the interface designer(s) must provide

representations of application entities. These must support the user's task, allowing

information to be displayed, collated and manipulated effectively. The problems of

designing representations are compounded where entities are updated in real-time and are

potentially shared, with different representations being used by different users to support a

variety of tasks.

Two general approaches to the design of effective representations can be identified. First an

approach based upon determining and encoding the various principles which underlie their

effective use allows representations to be generated automatically. The alternative is an

iterative approach whereby initial representation designs are refined on the basis of user

feedback generated in evaluation trials. Other approaches are hybrids of these two, such as

allowing direct manipulation tailoring of automatically generated designs.

The most effective representation to use for a set of entities will obviously depend on the

entities themselves; for example, a pie chart of a data set will not be effective if that data

set comprises several thousand categories, each requiring a slice of the pie. Many

automatic generation systems, such as Mackinlay's definitive APT system [1], use an

analysis of the data to be presented to generate the representations.

Besides the data itself, it is equally important, however, to take into account what the

representations will be used for and who they will be used by. The effectiveness of a

particular representation is therefore dependent on the task(s) being supported and the level

of expertise/domain knowledge of the users, as well as the data itself. The earlier work of

Mackinlay has been extended in systems such as Casner's BOZ [2], which requires a

formal description of the user's task to generate a representation.

The alternative approach of iterative development does not attempt to formally model the

data, tasks or users. Rather, evaluation of prototype designs by end-users engaged in real

tasks allows iteration towards task- and user-specific interface representations. Such an

approach, as illustrated in figure 1, has long been advocated for developing systems where

understanding of the problem is poor, as in user interface design.

Representation in cooperative systems

There has been much research in the HCI community on the formal modelling of both tasks

and users. Such a description is required if automatic generation approaches to

representation design are to be effective. The description of individual tasks in a formal and

complete manner is complex; decomposing a work activity into task units is greatly

complicated when work is performed in groups rather than individually.

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 2) page 22

The process of task allocation amongst group members can be very flexible, based not on

individual status or prescribed responsibilities but on levels of busy-ness and current

situation. This flexibility is often responsible for the efficient manner in which work is

carried out; consider for example the effects on productivity of 'working to rule' in

industrial disputes. In cooperative environments, the cooperative structure changes

dynamically to match changes in the current situation.

It is not therefore clear how a task performed by a group can be formally represented. In

addition, the prescriptive nature of automatic approaches prevents alternative and radical

interface designs being produced. For cooperative systems, rapid prototyping of interface

representations is needed to determine the effectiveness of an interface design.

Pick Nearest
Existing Design

new prototype symptoms

costs to users

"deep" problems,

 costs, frequency
modifications

specifications

 'key'

requirements

R

E

F

I

N

E
M

E N T

E

N

V A
L

U
A

T

I

O

Observe
Interaction

Do First
Design

Propose
Changes

Implement
Changes

Interpret
Symptoms

Pre-Design
Research &Survey

Figure 1 The user interface prototyping cycle (based on [3]: figure 1)

In addition to utilising qualitative rather than quantitative data, an approach based on rapid

prototyping has the advantage that a range of different designs can be developed and

evaluated. Some of these designs may initially seem unsuitable given current

understanding of what makes a user interface effective, but evaluation trials may

demonstrate their suitability for end-users who have extensive knowledge of their domains

of expertise.

[1] MacKinlay, J., Automating the design of graphical presentations of relational
information, ACM Transactions on Graphics., 5(2), 1986, pp 110-141

[2] Casner, S., A task-analytic approach to the automated design of graphic presentations,
ACM Transactions on Graphics., 10(2), 1991, pp 111-151

[3] Draper, S., Watley, K., Practical Methods for Measuring the Performance of Human-
Computer Interfaces, notes accompanying talk given at the JCI HCI Summer School,
Queen Mary College, August 1991

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 3) page 23

Plate 1 A MEAD screen showing the components of a Radar UD

SIDEBAR 3: The MEAD multi-user interface prototyping environment

MEAD† is a prototyping environment which allows the construction and refinement of

cooperative displays. It makes visible the model of a User Display (UD) discussed in the

main text, whilst hiding the complexity of the Update Handler, Master/Surrogate and local

caching mechanisms. The tools MEAD provides are shown in plate 1†† which illustrates

the definition and realisation of a Radar UD.

1 2 3
4

5
6

7
8

MEAD components (Numbers refer to key)

1. MEAD information window

2. Object Store Server tools

From this toolbox, the user interface developer can open tools on the object store (not

illustrated), the View definitions (5) and the Master UD agents (6). These definitions are all

held in a central component called the Object Store Server (OSS).

† MEAD version 2.0 is developed in Objectworks\Smalltalk r4.1 for Sun workstations
†† Note to editor: A colour version of this plate is available

Paper #930705: Architectural support for cooperative multi-user interfaces (Sidebar 3) page 24

3. Slave toolbox

To open a Window such as (8) which presents a UD, a Slave must be started which

registers itself with the OSS described above. The Slave toolbox is then accessible which

allows UDs to be opened on the local workstation.

4. MEAD launcher

OSS and Slave modules can be started and shutdown using this panel. Typically, one

machine will run the OSS in any one session with Slaves being started on a number of

machines (which can include the machine running the OSS).

5. View definition tool

This supports the definition of different entity representations called Views. Using a set of

primitives, the user interface developer constructs the representation, indicating how entity

attribute values are to be positioned, how they are to be presented and how the user can

interact with them to change the state of the represented entity.

6. User Display browser

UDs can be created, re-named and removed using this tool. In addition, definition tools can

be opened on the Selection, Presentation and Composition criteria components of the

selected UD (7).

7. User Display definition tools

These capture the definition of the Selection, Presentation and Composition criteria for a

UD. Each set of criteria are created and modified using a separate 'form'. The Selection and

Presentation criteria are specified by editing a condition template. A single entity must

pass all the conditions on a template to pass the guard which the template defines.

Composition Axes are defined to specify the layout of the representations in the UD. This

tool allows a number of different arrangements to be defined to allow the user to change

layouts, as well as supporting the association of different backdrops, depth effects etc. The

layout shown here is a 3-D arrangement, with aircraft longitude and latitude mapped on to

x,y position and height being used to calculate the depth.

8. User Display window

This presents the UD defined in (7). Aircraft entities are taken from a small example

information store created from actual flight plan data. The attribute values shown in each

View can be edited to update the underlying entities, with all changes propagated to all

other representations on all Slaves. In addition, the user can change the View

representation being used for each entity and can change the layout they wish to use if

alternatives have been defined). Any changes made to the View or UD definitions are

immediately propagated to all open Windows which present effected UDs.

