
CSCW 92 Proceedings November 1992

Permission to copy without use all or part of this material is
granted provided that the copies are not made or distributed
for commercial advantage, the ACM copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

An architecture for tailoring cooperative
multi-user displays

Richard Bentley, Tom Rodden, Peter Sawyer and Ian Sommerville

CSCW Research Centre
Computing Department
Lancaster University
Lancaster LA1 4YR.
U.K.
Email: {dik, tom, sawyer, is}@comp.lancs.ac.uk
Phone: (+44) 524 65201
Fax: (+44) 524 381707

ABSTRACT

A range of architectures have emerged which support real-
time cooperative user interfaces. These architectures have
tended to centralise the management of the interface and
thus provide only limited support for user-centred
development and interface tailoring. This paper considers
the problems associated with the development of tailorable
cooperative interfaces and proposes an architecture which
allows such interfaces to be developed using an incremental,
user-centred approach.

The architecture presented in this paper has emerged within
the context of a project investigating cooperative interface
development for UK air traffic control. We conclude that the
architecture is equally applicable to other Command and
Control domains, where a shared information space forms
the focus for the work taking place.

KEYWORDS

Multi-user interfaces, CSCW architectures, Command and
Control systems, Database visualisation.

INTRODUCTION

The merging of computer and communications technology
and the development of network based windowing systems
has seen the development of a range of real-time cooperative
systems. These systems often exploit multi-user interfaces
which allow application sharing across a number of
workstations and many examples have been reported within
the CSCW literature [1,2].

The approach taken by the majority of these systems has
been to extend existing windowing technology to provide

replication of output on a number of displays. This
approach has been most successfully applied within shared
window or desktop conferencing systems. A number of
more recent examples of real-time cooperative systems have
considered the development of architectures to support
multi-user applications with more control over the user
interface [3,4].

Most existing approaches have tended to consider user
interface construction as a task for application developers
and have provided only limited support for user-centred
development and tailoring. In contrast, this paper presents
an architecture which supports rapid user-centred
development of multi-user displays and its realisation
within a prototype system for generating cooperative
interfaces.

The development of the architecture and system described in
this paper has taken place within the context of an on-going
multi-disciplinary project investigating the application of
user interface technology to support the work of air traffic
controllers. The project involves the extensive use of
ethnographic observation with the intent to inform the
development of cooperative systems to support the
controlling process [5].

SYSTEM RATIONALE AND REQUIREMENTS

Air traffic control (ATC) systems are a type of Command
and Control (C2) system and, like many classes of C2

system, involve controllers cooperating using a shared
information space which reflects the external processes
being controlled. This shared space is updated by controllers
and by input from external sensors such as radars,
transponders, etc. (figure 1). Each controller maintains and
interacts with their own view of the shared space, with
cooperation between controllers supplemented by direct
audio communication facilities.

Currently, most C2 systems are hybrid systems where a
computer-maintained database is supplemented by paper

CSCW 92 Proceedings November 1992

User

User

User

audio links

External Input Shared Information Space Local Representations Cooperating Users

Figure 1 Cooperation via a shared space

work and a variety of manual procedures to form the shared
information space shown in figure 1. Controllers evolve a
complex and subtle way of working which often involves
coordinating their decisions with other controllers. In
making decisions, they must often anticipate how other
controllers will react to particular configurations of the
system being controlled. In order to reflect this complexity
we are attempting to use an on-going ethnographic study
[6] to inform the derivation of user requirements.

The ethnographic observation of controllers and control
rooms has been a central theme within CSCW and has been
reported elsewhere by [7,8,9]. Our work aims to extend this
previous history by using the ethnographic study to inform
the construction of a computer system. In many ways this
is a new field for both computer scientists and sociologists
with methods of working and respective roles in the
requirements capture process still being established.

Given the lack of any established working method we use a
prototyping approach to system development. The focus of
our work has been the development of a prototyping system
which allows specific instances of cooperative interfaces to
be rapidly constructed in conjunction with the results of on-
going studies [10].

Architecture Requirements

The overall objective of the architecture, therefore, is to
support an environment for the prototyping of interfaces for
users cooperating via a shared information space. The
architecture should be flexible enough to allow the
interactive development of these interfaces by informal
consultation between user, interface developer and
ethnographer. The role of the prototype generator and initial
observations highlight a number of requirements for the
underlying architecture.

1) Support for multi-user displays

Cooperating users access the shared information store
through individual workstations. This form of access will
often be supplemented by the informal cooperation gained
from screens being located within a common control room.
Given the reliance on controllers' awareness of the activities
of others, the supporting architecture should :-

• Allow the construction of different user display formats.

• Allow displays to be shared across different workstations.
• Support the visualisation of shared entities within user

displays.
• Allow the manipulation of shared entities on different

workstations.
• Allow the set of cooperative displays to be dynamically

changed with workstations being easily added and
removed.

2) Support for different views

Cooperating users may wish information to be presented in
different ways. For example, in ATC a particular
controller's view of an aircraft could be different to that of
an officer concerned with controlling the flow of traffic. The
architecture should support different views of entities within
the shared information space so must :-

• Allow the definition of different interactive
representations of shared entities.

• Maintain these different representations as underlying
entities change.

• Allow the updating of entities through interaction with
these representations.

To promote rapid interface construction the architecture
should allow these facilities to be provided in a highly
visible and accessible manner.

3) Support for tailorability

Our focus is on the construction of cooperative interfaces in
conjunction with the observation of users and it is difficult
to predict the exact nature of these interfaces in advance. It
is important that the architecture allows interfaces to be
easily constructed and tailored by domain experts and
developers in line with the results of observational studies.
In particular the architecture should :-

• Allow system features to be presented in such a way that
details are readily understood.

• Allow displays to be easily tailored to support different
working practices.

• Support the personalised presentation of shared
information to different users.

An end-user could be given complete freedom to tailor the
appearance of his or her display by the architecture.
However, results of initial observations have suggested that

CSCW 92 Proceedings November 1992

end-user tailorability needs to be bounded within a
cooperative setting. For example, in ATC it is important
that controllers understand each others displays at a glance.
In fact when controllers change at the end of shifts the in-
coming controller monitors the work of the out-going
controller he or she is replacing for some minutes prior to
switching position. The limits and bounds of the
tailorability eventually provided to end-users will be a
matter of consultation between developer, controller,
observer and management.

SHARED INTERFACE ARCHITECTURES

The merging of workstation technology and real-time
computer conferencing has played an important role in
CSCW. This merging has been termed d e s k t o p
conferencing and an integral part of desktop conferencing is
the use of multi-user interfaces. Lauwers [11] outlines two
approaches for the development of multi-user interfaces.
The development of special purpose applications which are
collaboration aware, and the adapting of existing single user
applications to provide collaboration transparent shared
applications. Examples of work which exploit collaboration
transparency include Vconf [12], Rapport [13], SharedX
[14], and MMConf [15].

Most of the collaboration transparent synchronous
interfaces exploit network based window systems such as X
or NeWS. These systems assume a client-server or virtual
terminal model of interaction where the application and the
display are separate and connected by an interaction
protocol. This approach allows local graphical events to be
handled by each display with interaction details being passed
to the application using this protocol.

The majority of shared window systems use a centralised
agent to multiplex output from applications onto a number
of display screens and to route input from each display to
the appropriate applications. In this approach an application
does not know that it is being shared between users.
Consequentially it is impossible to support different views
of the shared information within these systems.

An additional problem with this approach is that an
assumed model of cooperation based on many readers but
only one writer is embedded within the system. As a result
it is difficult to customise these systems and any
tailorability which exists has concentrated on the
development of techniques to support different forms of turn
taking protocols [16].

In contrast to the transparent approach outlined above,
collaboration aware solutions provide facilities to explicitly
manage the sharing of displays between different users. This
approach has been adopted by a range of applications
including Cognoter [1], Grove [17] and rIBIS [2].

As a result of the centralisation of user interface
management, multi-user cooperative applications can
support different user interfaces and many of them provide
facilities which allow individual views to be supported.

Recently researchers have started to examine how this
arrangement can be generalised to provide supporting
architectures for a variety of applications. Systems adopting
this approach include the Rendezvous system [4] which has
the ability to support different user views on application
objects and interactions with these views. This is provided
by maintaining a separation between underlying objects,
which contain the application semantics and interaction
objects, which maintain details of users' views on these
objects.

Collaboration aware applications require a significant degree
of logical centralisation. Systems which are physically
centralised and directly support a number of displays have
been criticised for their inability to provide the responsive
interfaces required by cooperative systems [11]. Replicated
architectures exist for collaboration aware applications [16]
which significantly improve this performance. However,
many of these systems involve an additional overhead in
maintaining consistency between application processes and
often require significant re-configuration when adding or
removing displays. As a direct result of our need to provide
responsive user interfaces whilst also supporting the
addition and removal of displays we have adopted a hybrid
approach in our architecture.

Existing architectures for collaboration aware systems do
not concentrate on tailoring. They embed user interface
management facilities within the cooperative application.
For example, in Rendezvous each user's interaction is
managed by lightweight processes embedded within the
application process. Facilities tend to be application
specific and provide only limited tailorability. In contrast,
our architecture attempts to localise and make visible many
features of user displays in order to support and encourage
tailorability by exploiting independent, active display
agents.

USER DISPLAY AGENTS

Traditional models of interaction consider the user interface
as a presentation of an application with users interacting
through some form of dialogue. User interface systems have
reinforced this model by supporting the development of user
displays as fixed system entities. User interface details are
often closely coupled with application semantics with the
result that tailorability is inhibited.

In contrast to previous dialogue models our approach is
based upon the application of shared interaction objects.
The state of these objects characterise the information
presented to the user by the application. Users interact
directly with these objects with state changes directly
affecting the state of the application. The interaction
semantics of the application are thus captured by the set of
objects presented to the user and how the system reacts to
changes in these objects.

Our architecture considers user displays as active entities
with individual properties which can be tailored by systems
designers in conjunction with users. We refer to these active

CSCW 92 Proceedings November 1992

UD agent

object set
x

y
zsystem

z

y

x

display screen

Figure 2 Detaching interaction semantics with a

User Display agent

entities as User Display Agents (UD agents) and the parts
of the user's screen managed by an agent is called a User
Display (UD). These agents maintain state and use this
state to determine details of interaction with the user. This
state information includes the interaction and presentation
details of the shared interaction objects relevant to a User
Display. Each User Display agent allows this information
to be directly manipulated with changes occurring
dynamically. This arrangement represents an extension of
the separation between interaction and underlying objects
supported by systems such as Rendezvous.

Under this arrangement, details of the user interface can be
held within the User Display agent rather than the system
(figure 2). This allows users to access the details of the user
interface semantics through mechanisms provided by the
User Display agent. This approach is analogous to the
difference between deep and surface object interaction
highlighted by Took [18].

The User Display Agent Model

Our architecture exploits active User Display agents as the
primary mechanism of interaction with a shared information
store. The following properties are central to this
interaction:

FOCUS: Cooperating users are only interested in a subset
of entities within the information store. As the state of an
entity changes, its relevance to each user may change.
Consequently a representation of that entity may have to be
added to or removed from existing User Displays.

VISUALISATION: Whilst cooperating users may require
representations of the same information, the form of these
representations may vary depending upon the user and task
the representation is supporting. Representations should
therefore reflect the user-task context, and changes in the
state of represented entities may require changes in the form
of representation used.

POSITION: The spatial arrangement of entity
representations on the user's screen may provide
information concerning relationships between those
entities. As the state of represented entities change, it may
be necessary to adjust the spatial arrangement to reflect
changes in these relationships.

Our model of a User Display separates the notions of the
entities to be displayed, their representations and their
spatial arrangement. A User Display has three separate
components: a Selection representing focus, a Presentation
representing visualisation and a Composition representing
position. A User Display agent manages the affects of
entity updates on each component of its User Display.

A Selection is a set of entities which are dynamically
chosen from the information store according to Selection
criteria. Selection criteria are predicates over entity
attributes and are specified by the interface designer. The
Selection criteria filter entities to select which should be
included in the User Display. As entities' states change, the
selection changes accordingly.

A Presentation is a set of Views used to represent entities
in the selection. A View is a graphical representation which
defines the appearance, attribute positioning and interaction
mechanisms for an individual entity. Views are selected for
each entity dynamically, according to the Presentation
criteria. These define a guard for each View which an entity
must pass if it is to be represented by that View. As an
entity's state changes, it may be necessary to change the
View used to represent it in the User Display.

A Composition is a set of positions which represent the
spatial arrangement of the Views in the User Display.
These positions can be absolute or relative to other Views.
As an entity's state changes, the positions of the Views
also change, to remain consistent with the arrangement
defined in the Composition criteria.

This abstraction of User Displays as autonomous entities
allows cooperative systems to be constructed of a federation
of agents interacting and responding to changes in a shared
information store. Each User Display agent contains
sufficient information to allow the presentation aspects of
shared entities central to cooperation to be readily tailored
without system re-configuration.

COOPERATIVE USER DISPLAY AGENTS

A characteristic of the kind of cooperative system we are
considering is that shared data provides the focus for the
cooperation taking place; different users working at separate
screens interact with shared information entities. In our
cooperative setting, users accessing a shared information
store each have a working set of User Display agents which
manage different displays of the shared information for them
(figure 3). Each agent can present the User Display it
manages in one or more screen windows, and agents can be
added to and removed from the working set as required.

Changes in the state of entities in the information space
potentially affect the selection, presentation and
composition components of each User Display. For
example, a change in the longitude of an aircraft will require
a change in composition in a User Display which presents a
radar (ie the radar blip for the aircraft will be seen to move).
Thus the architecture must allow relevant User Display

CSCW 92 Proceedings November 1992

Shared

Information

Space

working set

of UD agents

display screen

250

180

320

250

180

320

User Environments

working set

of UD agents

working set

of UD agents

x

y

z

Figure 3 User Display agents cooperating via a shared

information space

Shared Information Space

Master

UD agentsstate

changes

Update Handler

250

180

320Surrogate

UD agent

250

180

320Surrogate

UD agent

Remote Workstations

Figure 4 Surrogate User Display arrangement

agents to be informed of such changes, these agents to
compute the effects on their User Displays and all windows
presenting that User Display to be brought up to date.

Maintaining User Displays

A requirement for our architecture was the need to allow the
same User Display to be presented on separate display
screens. Referring to figure 3, this means that users may
hold copies of the same User Display agent as part of their
working set. However, changes in the state of entities in
the information space will affect each of these copies in the
same way, and thus the effects of such changes on
selection, presentation and composition need only be
calculated once.

To support this, each user may hold a copy (or Surrogate)
of each of the User Display agents as part of their working
set. These Surrogate agents are minimised, in that each
holds only the current state of the User Display; the
definition of the User Display is held by the Master User
Display agent. This receives notification of relevant
changes in the state of entities, computes the effects on the
User Display (using the selection, presentation and
composition criteria), and informs each of its Surrogates of
the new state (figure 4).

This factoring out of display semantics supports local
tailorability of information displays without requiring
system re-configuration. Local tailoring operations
performed on a display, such as selection of alternative
Views for represented entities, are retained by the Surrogate
agent. Machines can be added and removed at any time
during system execution; added machines will contact the
Master User Display agents and create the Surrogates
required, establishing communication links to receive the

current state of the User Display and future update
information.

All access to the information store is made via a well-
defined interface, which informs the Update Handler
component (figure 4) of any changes made by external (ie
non-user) sensors. In addition, the Update Handler must
pass on user-sourced changes to the information store using
this interface. Thus, our architecture can support a range of
storage technologies and places no requirements on the
information store for broadcasting update information.

The Update Handler is responsible for passing update
information on to those Master User Display agents
potentially affected by an update. For this, the Update
Handler uses information regarding each agent's interest set,
which is registered when the User Display the agent
manages is defined. (For example, an agent managing a
radar Display will register changes in longitude and latitude
as part of its interest set). In the event of a change in
definition of a User Display, the User Display agent must
register the new interest set with the Update Handler as well
as computing the new state.

Figure 5 shows the dispatching mechanism of the Update
Handler, which minimises the communication (and so the
cost) involved in informing User Display agents of updates.

Update

Handler

(1) Entity: CBD123 has changed

attribute: longitude to: 50

(2) Who is

interested in

longitude changes ?

(4) How does

this update

affect my UD ?

(3) Entity: CBD123

has changed attribute:

longitude to: 50

Master

UD agent

(Radar)

Master UD

agent

Master UD

agent

Figure 5 The dispatching role of the Update Handler

CSCW 92 Proceedings November 1992

z

y

x

x

a

b

c

links to

Master

UD agents

display screen

User Environment

local cache

links to

Update

Handler

y x

b

c
z

a

working set

of Surrogate

UD agents

Figure 6 Local caching mechanism

Figure 7 The User Display definition tool

It is possible (and quite likely) that entities in the
information store may be represented in different User
Displays by different Views. As updates occur, these Views
must also be updated to remain consistent with the entities
they represent. Routing such updates through the User
Display agents would require each agent which maintains
such a View to be informed of the update, even though the
update may not affect the selection, presentation and
composition components of that agent's User Display.

These agents would then have to inform their Surrogates of
the change, potentially resulting in many communications
to the same workstation to update the Views.

To minimise this communication, we have adopted a
caching mechanism where replicated subsets of the
information store are held locally (figure 6). It is the Update
Handler's responsibility to broadcast changes in the state of
entities to all caches which maintain replicated copies of
these entities. Views are connected directly to these cached
entities, removing the need for complex mechanisms to
maintain entity-View links across workstations. The links
between the Update Handler and caches are bi-directional to
allow the Update Handler to receive updates in the state of a
cached entity caused by user interaction with one of that
entities Views. The Update Handler can then inform the
information store of such updates, selectively multicast
updates to caches which maintain a copy of the updated
entity and inform relevant User Display agents in case the
update requires changes in the state of any User Displays.

IMPLEMENTATION

Our implementation of this architecture forms the basis of a
prototyping environment which allows the construction and
refinement of cooperative displays [10]. We have found that
this implementation, developed in Smalltalk-80 for Sun
workstations, meets our performance requirements for real-
time updating.

The prototyping environment makes visible our model of a
User Display, whilst hiding the complexity of the Update

CSCW 92 Proceedings November 1992

Figure 8 A window presenting the 'North England Radar'

User Display

Handler, Surrogate agent and local caching mechanisms.
The interface designer, in consultation with a domain expert
and/or end-user, defines the selection, presentation and
composition criteria of each User Display. Libraries of such
criteria can be constructed and re-used, shortening the time
required to construct new User Displays. Our tool used to
capture these criteria is presented in figure 7, which shows
the definition of a radar User Display.

The task of defining a User Display is partitioned, so that
the interface designer completes a separate 'form' for each of
the selection, presentation and composition criteria. For the
selection and presentation criteria, these forms are
represented as Pattern templates [19] which can be used to
capture the criteria in a by-example manner.

A pattern defines a guard and an entity must meet all
conditions specified in the pattern to pass that guard. (A
pattern with no conditions implies all entities pass that
pattern's guard). To meet the selection criteria of the User
Display defined in figure 7 (and thus be represented in that
display), the values of longitude and latitude attributes for
'CivilianAircraft' type entities must be between 5°W-1°E
and 52°-55° N respectively.

The presentation criteria are defined by specifying the
conditions under which different Views will be used to
represent entities of each type. View templates are defined
using a different tool, which captures each template's
appearance, attribute positioning and interaction
mechanisms. Templates are associated with one or more
entity types and entities of these types can be represented by
directly manipulatable instantiations of these templates.
Both User Display and View definition tools are integrated,

so that the User Display definition tool knows which
Views are associated with which entity types. In figure 7,
entities of type 'CivilianAircraft' will use a 'Radar Blip'
representation.

For each type of entity which can be represented in the User
Display, the composition criteria define how entity
representations will be arranged. The model of composition
is relatively simple, but allows Views to be positioned in
two dimensions, absolutely or relative to other Views in
the User Display. For example, the composition criteria
defined in figure 7 will position Views of 'CivilianAircraft'
type entities absolutely, depending on the values of their
longitude and latitude attributes.

Figure 8 shows a window presenting the User Display
defined in figure 7, as it would appear on the user's display
screen. Aircraft represented are taken from a small example
information store created from actual flight plan data.

The definitions of the selection, presentation and
composition criteria are translated into directly evaluatable
expressions by the User Display agent. The agent can use
these expressions to determine the effects of updates on the
User Display it manages. By using these form-based
representations to capture the definition, the underlying
complexity of these expressions is hidden from the
designer, allowing rapid development and modification of
different display formats. Our environment makes no
distinction between design and run time, so User Display
definitions can be modified and the effect on currently
displayed information immediately observed.

CONCLUSIONS AND FUTURE WORK

We have presented an architecture to support the
development of cooperative interfaces for C2 systems which
is intended to support the rapid prototyping of different
formats of information display. The envisaged development
model is that interfaces will be constructed in informal
consultative sessions and informed by the results of
observational studies. These interfaces can then be evaluated
by controllers in actual control environments.

The architecture allows the construction of multi-user
interfaces by the definition of User Displays which present
information from a shared information space. User Displays
can be shared across different workstations and a single
workstation can support multiple User Displays. Each type
of entity has an associated set of Views which can be used
to represent entities of that type. Besides information
presentation, these Views also define the interaction
mechanisms which allow users to update the entities they
represent. These updates are submitted to the shared
information store and propagated to all other representations
of the shared entity, as well as relevant User Displays.

Our approach to development has been to make as few
assumptions as possible regarding the coordination the
architecture must support. Rather, we have built general
mechanisms which can be tailored to conform with the

CSCW 92 Proceedings November 1992

results of observational studies. The propagation of change
is an example of this philosophy; our update mechanism is
'policy free', with changes propagated to other users without
interference from the architecture. More specialised update
strategies will be tailored from this general mechanism to
meet the specific needs of controllers.

Although our architecture has evolved to support the
development and management of cooperative interfaces in
the domain of ATC, we believe it is equally applicable to a

wide range of C2 systems. Within such systems, shared
system entities provide the focus for cooperation, with
changes to the state of these entities being the smallest
granularity of update requiring propagation.

The domain that we have addressed allows us to consider the
shared information store as devoid of embedded procedure,
so that information is held as state, without considering
methods which operate on that state. This simplifies our
model of distribution and our local caching mechanisms.
Future investigations will consider the problems of
embedded procedure, such as method mutability,
information migration and propagation of change within the
information store.

REFERENCES

1. Stefik, M., Foster, G., Bobrow, D. G., Kahn, K.,
Lanning, S., Suchman, L., 'Beyond the chalkboard:
computer support for collaboration and problem
solving in Meetings', Communications of the ACM,
30(1), January 1987, pp 32-47.

2. Rein, G. L., Ellis, C. A., 'rIBIS: A real-time group
hypertext system', International Journal of Man
Machine Studies, 34(3), March 1991, pp 349-368.

3. Greenberg, S., 'Personalisable Groupware:
Accommodating Individual Roles and Group
Differences', in Proceedings of ECSCW '91, Bannon,
L., Robinson, M., Schmidt, K. (eds), Sept 25-27,
Kluwer, 1991, pp 17-31.

4. Patterson, J. F., Hill, R. D., Rohall, S. L., Meeks,
W. S., 'Rendezvous: An architecture for synchronous
multi-user applications', in Proceedings of CSCW '90,
October 7-10, Los Angeles, Ca., ACM, 1990.

5. Bentley, R., Hughes, J.A., Randall, D., Rodden, T.,
Sawyer, P., Shapiro, D. and Sommerville, I.,
'Ethnographically-informed systems design for air
traffic control', in Proceedings of CSCW '92,
November 1-4, Toronto, Canada, ACM, 1992.

6. Harper, R., Hughes, J. A., Shapiro, D. Z., 'Working
in harmony: An examination of computer technology
in air traffic control', In Studies in Computer
Supported Cooperative Work. Theory, Practice and
Design, eds J. M. Bowers and S. D. Benford,
Amsterdam: North-Holland. 1991.

7. Heath, C., Luff, P., 'Collaborative Activity and
Technological Design: Task Coordination in London
Underground Control Rooms', in Proceedings of

ECSCW'91, Bannon, L., Robinson, M., Schmidt, K.
(eds), Sept 25-27, Kluwer, 1991, pp 65-80.

8. Suchman, L., 'The Situated Structuring of Cooperative
Work', Inaugural Lecture, CSCW Centre, Lancaster
University, October 3, 1991.

9. Hutchins, E., 'The technology of team navigation', in
Intellectual Teamwork: Social Foundations of
Cooperative Work, Galegher, J., Kraut, R. E., Egido,
C. (eds), Hillsdale, New Jersey, Erlbaum, 1990, pp
191-220.

10. Bentley, R., Rodden, T., Sawyer, P., Sommerville, I.,
‘A prototyping environment for Dynamic Data
Visualisation’, in Proceedings of the 5th IFIP
TC2\WG2.7 Working Conference on Engineering for
Human-Computer Interaction, Ellivuori, Finland, 10-
14 August, C. Unger and J. A. Larson (eds), Elsevier
Science, 1992.

11. Lauwers, J. C., Lantz, K. A., 'Collaboration awareness
in support of collaboration transparency: Requirements
for the next generation of shared window systems', in
Proceedings of CHI '90, April 1-5, Seattle,
Washington, ACM, 1990, pp 303-311.

12. Lantz, K. A., 'An experiment in integrated multimedia
conferencing', in Proceedings of CSCW '86, Austin,
Texas, December 1986.

13. Ahuja, S. R., Ensor, J. R., Horn, D. N., 'The Rapport
Multimedia Conferencing system', in Proceedings of
the Conference on Office Information Systems
(COIS88), Allen R. B. (ed.), March 23-25, Palo Alto,
Ca., 1988.

14. Gust, P., 'Shared X: X in a distributed group work
environment', presented at the 2nd Annual X
conference, MIT, Boston, January 1988.

15. Crowley, T., Milazzo, P., Baker, E., Forsdick H.,
Tomlinson R., 'MMConf: An infrastructure for
building shared multimedia applications', in
Proceedings of CSCW '90, October 7-10, Los Angeles,
Ca., ACM, 1990, pp 329-342.

16. Greenberg, S., Bohnet, R., 'GroupSketch: A multi-user
sketchpad for geographically-distributed small groups',
in Proceedings of Graphics Interface, June 5-7,
Calgary, Alberta, 1991.

17. Ellis, C., Gibbs, S. J., Rein, G., 'Design and use of a
group editor', Technical report STP-263-88, MCC,
September 1988.

18. Took, R., 'Surface Interaction: A paradigm and model
for separating application and interface', in Proceedings
of CHI '90, April 1-5, Seattle, Washington, ACM,
1990, pp 35-42.

19. Larson, J. A., 'A Visual Approach to Browsing in a
Database Environment', IEEE Computer, 19(6), June
1986, pp 62-70.

