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1. INTRODUCTION 
 
This paper presents aspects of PROLOG history in 
a three part argument: (1) the birth of an algorithm 
and the historical background of artificial 
intelligence and PROLOG and its relation with 
logical programming, (2) different research done on 
PROLOG in order to expand, adapt or transform its 
features for implementing different data structures 
and system architecture. Notably, I present the 
development of logical and parallel architecture 
(Kowalski, Clark and Gregory, 1982), hybrid 
systems such as POPLOG using elements of 
PROLOG with LISP and the use of other languages 
and non-logical augmentation (Mellish and Hardy, 
1982) and some reflection on computer and 
education dealing with the definition of the user in 
relation to the development of micro-PROLOG 
(Ennals, 1982, 1984) and (3) a reflection on the 
infra-transformation of the computing field in terms 
of professional dynamics and its implication for a 

social studies of technology grasp of computer 
sciences along the line of its epistemic practices.  
 
Since 1970, PROLOG has been through several 
evolutions and implementations reflecting the 
modern history of formal mathematical thinking in 
computing. It has been made possible largely by 
disseminating a working version of PROLOG, 
known as the Edinburgh version, which became 
ISO standard in 2003. In this paper, I suggest it is 
not enough to appreciate PROLOG’s role in 
computing communities from its practical results 
(such as relational databases, problem solving, 
design automation, symbolic equation solving, 
biochemical structure analysis etc.). A more fruitful 
road demands to understand the process linking the 
operational framework of implementation with 
PROLOG logical structure.  
 
My paper seeks to convey a sense of research 
dynamics that went into PROLOG 
implementations1 through a selected review of 
historical cases. It approaches research as a process 
not a product. The arrangement between real 
condition of implementation and PROLOG internal 
structure is a subtle domain. It delimits computer 
scientists’ area of implementations and skills 
developments distinguishing and animating a 
specific professional community. This is a strong 
suggestion for the sociologist of science to 
understand not only the basic features of PROLOG 
in order to perceive the shapes of implementations 
but also to convey the way in which technical 
objectives and hardware prospects of exploitation 
determine PROLOG implementations.  If this 
research objective is attained, one should have a 
sense of computer scientists’ epistemic framework 
of activities. The depth of this concern is revealed 
by the way one understands how PROLOG formal 
computing logic takes its shape from the ordinary 
features of computing systems’ exploitations.  
 
 

2. HISTORICAL BACKGROUND 
 
2.1 PROLOG in the history of AI  
 

                                                 
1 Ehud Shapiro (1989) and Gupta et al (2001) deserves special 
mention by providing encyclopaedic surveys of families of 
PROLOG, respectively concurrent logic programming and 
parallel PROLOG programs. 
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In 1972, Alain Colmerauer and his colleagues Bob 
Pasero and Philippe Roussel (Roussel, 1975) 
invented the programming language PROLOG at 
the University of Marseilles, France. PROLOG 
demands the programmer to specify task in logic 
rather than conventional instructions. Hence, its 
name PROLOG stands for Programming in Logic 
(Programmation en Logique in French). The 
software implements man-machine communication 
in natural language with a question – answering 
system. It has a similar objective as Terry 
Winograd’s use of micro-PLANNER (1972), but 
the novelty comes from the syntactic-arithmetic 
liaison for programming rather than semantic.  
 
In the 1960’s Artificial Intelligence research 
context, early computer scientists were 
investigating the possibilities for computers to 
prove theorems automatically (Bowen, 1979).  
Several ambitious programs of research sought to 
explore the possibilities of human reasoning in 
problem solving, means-ends analysis, and rational 
choices theory working out programming structures 
in LISP (Newell, 1958). John McCarthy, LISP 
creator, devised to program by setting instructions 
in declarative form. LISP was the first program 
constituted of instructions which involved sub-
instructions and, this, virtually ad finitum. Hewitt’s 
(1970) program PLANNER offers an alternative for 
instructing the computer based on a procedural plan 
which demands programming by pattern of goal 
and assertion. Sussman, Charniak (1970) Micro-
PLANNER offered the possibilities to deal with a 
more complex structure of information by working 
with assertions and goals (Winograd, 1972). From 
Hewitt’s view point, one can see PROLOG has 
reinvented a subset of Micro Planner, i.e. its 
assertion component. In fact, the story of PROLOG 
is not so linear, as it does not follow from the early 
development of mainly US development in 
Artificial Intelligence. One of the issues with the 
complexity of assertion in programming was the 
issue of control structure. For example, Colmerauer 
noticed (Kowalski, 1988: 41) that it is impossible to 
operate the list ‘append’ in PLANNER without 
resorting to LISP and this may bring an issue of 
coherence since one has to deal with large lists, or 
complex lists of information.  
 
The original idea of PROLOG was to program not 
with a set of instructions but directly with formal 
arithmetic logic as a total solution2. This idea has its 
own history. In 1970, Colmerauer et al. (1993) 
came in touch with research done (Hutchins, 2001) 
at Montreal. Canadian computer scientists worked 
on a syntactic transfer system for English-French 

                                                 
2 The formulation of this idea is to be found in Robert Kowalski 
(1982) ‘Logic as a computer language’ in K.L. Clark and S-A 
Tärnlund (eds.) Logic Programming, Academic Press, London: 
3-18. 

translation.  From the TAUM project (Traduction 
Automatique de l’Université de Montréal) comes 
two major achievements: (1) the Q-system 
formalism for manipulating linguistic strings and 
trees and (2) the Météo system for translating 
weather forecasts. This preliminary research on 
natural language communication was combined 
with Kowalski’s research on automated theorem-
proving (Kowalski, 1971). Colmerauer, invited 
Kowalski to discuss the logic of their question-
answer system. This followed up on Philippe 
Roussel and Jean Trudel’s (University of Montreal) 
works on the deductive aspects of language parsing 
and its relation to the SL-resolution theorem prover. 
Kowalski worked out with Colmerauer 
(Colmerauer, 1982) a way to represent grammar by 
using logic and to parse sentences by using the 
principle of resolution (see next section). 
Colmerauer and his team worked with resolution, as 
a uniform general-purpose theorem.  
 
In 1971, Colmerauer and his colleagues’ aimed at 
developing a deduction machine based on text 
written in French. The first step toward the logical 
system in PROLOG as we know it is the research 
on a preliminary system of natural language 
communication (Colmerauer, 1971). It consists in 
connecting logical formulae and French sentences 
with 50 rules written in Q system (a paraphrase 
generator). Colmerauer uses his work on Q-
grammar (Colmerauer, 1970) to device another 
logical method of representing language. He sought 
to avoid associative logic (like the LISP function, 
see Boyer & Moore, 1975) by a formal 
representation of strings of language coming from 
his work on Q-grammar. In 1972, the second step 
securing the arithmetical aspect of logic took place. 
Thanks to work done from Kowalski’s SL-
resolution prover (linear resolution by selection 
function), it helped finalise the connection between 
natural language processing and automated 
problem-solving.  
 
The creation of a language working with arithmetic 
logic demands notational adaptation. Robinson’s 
(1969) notation became the standard for 
programming in PROLOG. For example, a function 
in lambda-calculus notation such as: 
 
√[x(x+1)] 
 
Can be expressed as an application notation such 
as: 
 
Γx(SQRT((TIMEx)((PLUSx)ONE))) 
 
To finish on the relationship between PROLOG and 
Artificial intelligence, I would like the reader to 
sensitise himself to the context of development: (1) 
the 1970s artificial intelligence development in 
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regard of the hardware and software of the time. (2) 
Its implication for the unsettled distinction between 
heuristics and algorithm in early artificial 
intelligence and the place of PROLOG vis-à-vis it.  
(1) It is essential to realise that limits in 
programming reflected limits of the processor 
power and memory. In 1971, PROLOG early 
implementations (Colmerauer, Roussel, 1992: 2) 
were done, in France, with an IBM 360-44 in 
Marseilles University with 900 K of memory and 
an operating system without virtual memory. This 
machine put 1 Mb of memory available to execute 
the programs and an operator console as interface 
between user and programs.  
(2) The early work on machine and program 
demanded from the computer scientists to find a 
way for the machine to execute instructions. Early 
computer scientists were working in applied 
mathematics departments whereby they started by 
matching their knowledge of mathematical 
procedures to a language that the machine could 
process. In this context, the issue of the difference 
between heuristics and algorithm (Campbell, 1985) 
became obvious. To clarify the contrast, I would 
say that different philosophies of the implication of 
mathematics for computing came into play. I would 
suggest that Artificial Intelligence researchers such 
as Allen Newell assumed a cognitive and 
behaviourist theory of computing. His research in 
heuristics starts with the idea that arithmetic 
reasoning and thinking process are essentially 
identical and therefore their matching is the way to 
go in the exploration and development of machine 
process. I would suggest that PROLOG developers 
may certainly hold a cognitivist theory of reasoning 
because they start with an applied perspective of 
arithmetical logic to computing restricted features 
of natural language. In this sense, Newell’s 
heuristic belongs to Skinner’s behaviourist 
paradigm whereas Colmerauer’s algorithm belongs 
to Horn’s arithmetic paradigm.  
 
2.2. PROLOG origin: Predicate Calculus and 

the definition of clause, the Horn clause 
and resolution theorem proving. 

 
(1) Predicate calculus and the definition of clause 
form. 
 
According to Colmerauer & Roussel (1993: 26), 
PROLOG’s form of logic is called Predicate 
Calculus. PROLOG integrates in the calculation of 
its clauses according to Robinson’s (1965, 1970) 
principles of first order calculus predicate. It allows 
the treatment of a statement in arithmetic as a logic 
program. The logic program (Shapiro, 1989: 415) is 
a finite set of definite clauses. The first order 
calculus is the basic arithmetic that permits to 
elaborate the vocabulary of PROLOG (or any 
logical program.) as a statement and the terms of 

the statement. In each PROLOG clause, the 
programmer has to decide its vocabulary in terms of 
a set of predicates (a set of data), a function symbol 
(their relations), a goal (corresponding to the quest). 
 
In predicate calculus, objects are called terms. 
Terms may be composed of a constant symbol, a 
variable symbol and a compound term. For 
example, a basic proposition in PROLOG: 
 
‘Mary is human’ is written 
 
Human (Mary) 
‘Human’ is a constant symbol. 
 
Man likes wine: 
Likes (man, wine) 
‘man’ is a variable symbol. 
 
X owns donkey (x): 
Owns (x, donkey (x)) 
‘x’ is a compound term.  
 
In PROLOG, those linguistic propositions are 
called a goal if starting a program and an argument 
if belonging to a larger argument structure. If one 
wants to build up further proposition from the 
compound term (see ‘x’ above), logician and 
computer scientists use either logical connectives 
(not, and, or, implies and is equivalent to) or/and 
universal (for all v, …) and existential quantifiers 
(there exist v such that …).  
 
The essential work done by Colmerauer and his 
team was to transform this form of logic into a 
programming language. Robinson’s first order 
calculus forms the resolution principle at the heart 
of PROLOG. It performs the basic arithmetical 
logic guiding the declarative language. In LISP, 
FORTRAN or COBOL, the program is made of 
lines of code or sets of procedural instruction. In 
PROLOG, the program starts by defining clauses 
and sub-clauses, i.e. the domain of the problem. A 
question equals a set of calculation of the predicates 
of the clauses. It is a bit like a micro-world of 
logical procedures, a territory of sub-procedures on 
which basic calculation furnish the answer to a 
search procedure (a question).   
 
Those terms in PROLOG are also called PROLOG 
clauses. Clauses are essential to understand the 
relation between logic and PROLOG. The form of 
clause specifies the different kind of relationship 
between variables within a clause. I will not review 
them here (see Clocksin and Mellish, 1984: 240-6). 
Those forms are essential for creating hybrid 
systems and implementing other forms of logic.   
 
(2) Horn Clause and Resolution Theorem Proving. 
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To understand the resolution principle, one can say 
that every statement in natural language is written 
in a way to perform mechanical theorem proving. 
Alan Robinson’s resolution principle offers a rule 
of inference permitting one proposition to follow 
another. The programmer’s work is to decide which 
proposition implies another, and how a valid 
conclusion can be proceed automatically.  
 
The resolution principle serves to treat a hypothesis 
as true or false according to arithmetic. Clocksin & 
Mellish set up a perfect example (1981, 2003: 249). 
One may try to show that Arthur is the king by 
setting up a problem is those terms: 
 
‘If every person respects somebody then that person 
is a king’: 
 
(1) person (f1(X)); king (X):- 
(2) king(Y):-respects(f1(Y),Y). 
 
‘every person respects Arthur’: 
(3) respect (Z, Arthur) :- person (Z)  
 
The resolution in 2 steps goes: 
‘Every person respects the king Arthur’ 
In arithmetical terms, you resolve the term 2 by the 
term 3, by matching them (called unification). 
 
(4) King (Arthur):- person (f1(Arthur)) 
 
‘Arthur is the king’ 
(5) king(Arthur); king (Arthur):-. 
 
Let us notice that even if the matching of one side 
of a proposition with another is called unification, 
this does not cover all the cases of unification in 
PROLOG. Here, in our example, we rely on 
ordinary language to understand the logic of the 
relationship between the terms of the clause. In 
applied cases, unification may represent parts of a 
database, the dealing of information in parallel 
between two computers, or anything else relevant to 
apply.  
 
There are also clauses that are restrictive. Horn’s 
clause is one of them. The Horn clause3 is a logical 
statement of the form:  
 
A1, A2, … An.  
 
where and A is called a positive literal 
representing, in PROLOG, a unique statement 

                                                 
3 The name "Horn Clause" comes from the logician Alfred Horn 
in his article (1951) "On sentences which are true of direct 
unions of algebras", Journal of Symbolic Logic, 16, 14-21. His 
theory of clause is the paradigm of PROLOG whereby sentences 
are considered to literally equate algebraic correspondence.  
 

symbolised by a letter. In PROLOG, this statement 
corresponds to a headless Horn Clause: 
 
:- A1, A2, …, An.  
A ‘headless’ literal is a statement of the form: 
:-bachelor(x) 
 
A ‘headed’ literal is as follows: 
Bachelor(X):-male(X), unmarried(X) 
 
In PROLOG, one can use linear input resolution as 
a way to say that one headless proposition is solved 
by the next proposition in line. The following 
proposition is considered to be a hypothesis which 
applied to the case solves the theorem. If we have 
the following proposition:  
 
the mother (of the couple X and Y), X is the mother 
of John: 
 
:- mother (john, X), mother (X, Y) 
 
And being a mother (of the couple U, V) is being 
the female parent: 
 
Mother (U, V):-parent(U,V), female(V) 
 
Then, the mother (of the couple X, Y) is a female X 
who is a parent of John. 
 
:-parent(john, X), female(X), mother(X,Y).  
 
 
In PROLOG, those statements can take four 
different forms and, therefore, play different 
connecting roles : (1) to be a rule, (2) to be a fact or 
unit, (3) to be a negated goal and (4) a be a null 
clause. Complexity of the basic clause depends on 
the predicate one used in a program.  
 
I have superficially overviewed the Horn clause to 
provide the reader with a sense of how PROLOG 
specialists define the way to attach a list of qualities 
(sub-clauses) to a definite clause. PROLOG can be 
defined as a collection of Horn clauses (Kahn & 
Carlsson, 1984: 117). This programming method is 
considered powerful because it offers formal means 
to draw inferences from a simple logical unit to 
more and more complex sub-units. This in turn 
allows carrying further correlations between the 
components of the sub-units.  
 
2.3 Remarks about Syntax. 
 
One important way one can appreciate the 
maturation of one language is by noticing the way 
communities of practitioners have tried to 
implement it. Different syntactic versions of 
PROLOG have started from various practical 
configurations of cases. Since 1972, in the early, 
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prototypic, developments of PROLOG by 
Colmerauer and his team, many computer scientists 
have added their stone to the edifice. One can trace 
the expansion of PROLOG to the 1980s whereby 
one sees the development of several types of 
syntax. For example, the original Marseilles 
interpreter (Kluzniak, 1984) is followed by the 
Exeter PROLOG (Fogelholm, 1984) and the 
Edinburg syntax (Clocksin, 1984a). 
 
The Edinburg syntax needs special mention as it 
emerged over the years as the standard PROLOG 
language. This is certainly due to the active work of 
Clocksin and Mellish proposing a standard in their 
textbook Programming in PROLOG. This 
normalisation of PROLOG syntax is essential for 
the diffusion and constitution of a community of 
active programmers. PROLOG does not stipulate 
the kind of syntax one should use. Clocksin (1984: 
94) provides a convenient frame within which one 
can start arranging clauses according to three 
arithmetical components4 (constant, structures and 
variables). The Edinburgh syntax served as a guide 
from which the 2003 ISO norm of PROLOG is now 
established.  
 
2.4 PROLOG and Logical Programming.  
 
PROLOG today benefits from the software 
implementation work of many computer scientists 
(Warren, 1979, Clocksin, 1984: 94). It is a program 
that is efficient to use if one want to work out 
problems by representing objects symbolically 
according to a type of relationships. PROLOG 
(Colmerauer, 1985) is composed of a set of 
procedures whose execution depends upon both (a) 
the kind of predicate it is made of (the kind of 
logical relationship) and (b) the kind of clauses (the 
type of assertion) associated being either facts (a 
‘declaration’: no procedure to perform) or rules (a 
‘procedure’: a procedure to perform) represented by 
a term. 
  
In the first level, we have a logical articulation 
clauses-predicate forming the procedures. 

                                                 
4

 1- Constants (also called ‘atoms’) are numerical data like 
integers (like 33456), floating point numbers (like 12.0), and 
negative integers (like -13), a sign or an operator (like +, >, ?, $ 
etc.) or alphanumerical (like a12). A constant working as an 
operator ‘+’ in the case of X + 12 is written in PROLOG +(X, 
12). 
2- Structures (also called ‘complex terms’ or ‘compound terms’) 
are made of constants data (called ‘functor’) and one or more 
components (the number of elements called in mathematical 
term ‘arity’). A structure is written in PROLOG: go(N,L) which 
means search L proprieties (to be defined) with the N properties 
(to be defined). 
3- Variables are other terms which are constituted of an upper-
case character or an underscored character followed by a string 
of numbers.  
 

For example: meal (a, m, d) where a stands for 
appetizer, m for main and d for dessert.  
 
In the second level, we have a logical articulation of 
the predicate themselves. This corresponds to the 
composition of a meal. 
For example:  

Main (m) 
(m = sole) 
(m = tuna) 
(m = pork) 
(m = beef) 
 
 Appetizer (a) 
(a = radishes) 
(a = pâté) 
 
 Dessert (d) 
(d = fruit) 
(d = cake) 
 
Given that we have 4 main dishes, we have 16 
possible combination of dishes (in arithmetic terms 
is 4²= 16.) 
 
Those clauses can be defined in the jargon as ‘a 
fact’ i.e. have no procedure to perform, or can be ‘a 
rule’ implying to perform a procedure. The 
computer system performs a procedure called ‘a 
goal’ by matching the different argumentative 
combination constituting the clause to the clause 
itself. This is considered as ‘answering a question 
or a quest’ about the predicate. It is clear, in the 
interpretive context of logical programming that 
‘answering a question’ is a metaphor for 
performing a matching procedure. In our case, the 
quest is: produce a light meal with less than 10 
units of calories.  
 
The way to answer this question is equivalent to 
manipulate terms of arithmetic through the 
parameters of the clause (Horn, 1951) i.e. according 
to logical definition of the clauses. In this case, one 
has to: (1) associate caloric units to each 
components’ of the meal, (2) define a light meal as 
under 10 units of calories, (3) perform basic 
arithmetic to calculate the caloric value of a meal, 
by associating each possible meal component with 
each possible caloric values under 10 (4) get the 
result of the light meals.   
 
(1) Caloric value defines 8 units as follows:  
units (beef, 3) 
units (fruit, 1) 
units (cake, 5) 
units (pâté, 6) 
units (pork, 7) 
units (radishes, 1) 
units (sole, 2) 
units (tuna, 4) 
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(2) Define the light meal: 
PROLOG computes sums of 2 numbers 
(corresponding to 2 units). So the light meal, who is 
composed of 3 courses (appetizer, main and 
dessert) is calculated in two steps called ‘little sum’ 
and ‘little successor’ (intermediary sums) which, 
cumulated, stays at under 10 calories.  
 
(3) Perform the arithmetic: 
The first intermediary sum (little sum) calculates 
the appetizer and the main such as x + y = z with z 
< 10.  
 
Light-meal (a, m, d) -> meal (a, m, d) 
� Meal is a triplet a, m, d. 
� The number of units of appetizers is x. 
� The number of units of main is y. 
� X + y = z. with z < 10. 

 
The second intermediary sum is to calculate v = z + 
u. 
 
� The number of units of dessert is z. 

 
� Z + u = v. v < 10.  

 
(4) Give the result of the composition and number 
(7) of light meals: 
 
Light-meal (a, m, d) ? 
(a = radishes, m = sole, d = cake) 
(a = radishes, m = sole, d = fruit) 
(a = radishes, m = tuna, d = fruit) 
(a = radishes, m = pork, d = fruit) 
(a = radishes, m = beef, d = cake) 
(a = radishes, m = beef, d = fruit) 
(a = pate, m = sole, d = fruit). 
 
Putting aside, the way PROLOG developed, which 
reflects the natural history of Colmerauer and his 
colleagues’ ideas, PROLOG open up for two 
important areas of inquiry marking its development: 
(1) implementation of other logical systems and (2) 
implementation of different proof procedures. 
Logic programming defines an epistemic field of 
research in computing formal logic whereby every 
computer scientists develop a sub-area of formal 
logic tested against the constraints imposed by the 
machine.  
 
2.3. Liberal interpretation of syntax and 

innovation in algorithms 
 
Clocksin (1984a) is certainly an active PROLOG 
promoter. He has reviewed areas where PROLOG 
has been put into use, namely (1) relational data 
bases and expert systems, (2) mathematical logic, 
theorem proving and semantics, (3) abstract 
problem solving and plan formation, (4) natural 

language understanding, (5) architectural design, 
site planning and logistics, (6) symbolic equation 
solving, compiler writing, (7) biochemical analysis 
and drug design. I propose to review some aspects 
that made PROLOG disseminations a reality. I 
propose to review 5 domains distinguishing 
PROLOG: (a) the technical advantages of 
PROLOG vis-à-vis LISP. This comparison 
underlines the viable alternative for programming 
more complex sets of data by, what I call, structural 
rather than sequential programming. (b) Those 
advantages of PROLOG software architecture show 
in the possibilities for other computer scientists to 
develop logical and parallel architecture. (c) The 
constitution of hybrid systems (like POPLOG) by 
combining PROLOG with sequential processing 
like LISP or object orientated processing like 
SMALLTALK. (d)The combination of other kind 
of hybrid version of PROLOG by using other 
language and using non-logical augmentation of the 
program and (e) the creation of micro-PROLOG as 
the development of PROLOG for education and 
end-users purposes (see 3.6).  
 
3. SOME EXAMPLES OF DISSEMINATIONS 

OF PROLOG IN COMPUTER SCIENCES 
 
In 1982, the debate between declarative versus 
procedural programming tends to confirm that 
PROLOG was a language that people were taking 
up. In the field of programming, there is a lot of 
invention but few long term survivors due to the 
change of hardware capacity and the corresponding 
software. PROLOG offers a software architecture 
that is a sort of tautological system. The program 
states facts and rules which define a problem and, 
in the same time, are programming instructions to 
solve the problem.  
 
Kowalski (1988: 38) calls them declarative and 
procedural functions. Logical schemes representing 
data combines information along a linear procedure 
of first order logic. This way of combining syntax 
and semantics constituted the programming 
language of which LISP is the paradigmatic 
reference. The advantage of sequential logical 
programming is its definition in terms of inference 
rules, a clear formal semantics (linkage between set 
of words) and simple notation to create the 
knowledge base. The drawback of the sequential 
scheme of programming is the lack of 
organisational principle for the data constituting the 
knowledge base. Colmerauer (1985) says of 
PROLOG that it is ‘a formalism for defining 
knowledge independent of the method of 
computation.’  
 
PROLOG and the diffusion of logical programming 
took place around the 1980’s. Researchers 
established the field with (1) textbooks on logic 
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programming, mathematical reasoning and 
PROLOG programming (Clocksin & Mellish, 
1981; Clark & Tärnlund, 1982), (2) the organisation 
of workshop and conferences and (3) the creation of 
a journal of logical programming. It is noticeable 
that concise reference manual are essential for other 
practitioners to take up the task, try it and 
eventually expend it and apply it to its own set of 
problem. Computer scientists work with the 
manuals, the available published research papers on 
the topic and word of mouth between colleagues.  
 
The essential point of the following section is that 
formal logical possibilities as well as practical one 
can largely extend original PROLOG capabilities. 
R Ennals J Briggs and D. Brough (1984) rightly 
observe that one can modify PROLOG logical 
machine by dealing explicitly with the Horn Clause 
subset of predicate logic. This is the application to 
specific domains and issues in the real world that 
specifies which sub-set of predicate logic computer 
scientists should use. The applications provide the 
occasion to suggest amendment to the formal 
logical and the basic Edinburgh syntax. At this 
stage, I rely on Clocksin’s review (1984b) of 
PROLOG applications presented in 4 main 
domains: expert systems, interface of databases, 
design automation, and scientific tools. Research 
teams worked to develop special application with 
different contractors (industrial production, 
biological research, agricultural planning and 
information databases).  
 
 (1) In scientific tool, Sterling et al. (1982) came up 
with a tool of computer-aided algebra called ‘Press 
system’, derived from earlier research on another 
system called ‘Mecho’ (Bundy et al., 1982). The 
system aims at finding solutions of simultaneous 
transcendental equations. Darvas et al. (1983) have 
created a program that calculates derivations of 
regression models used in biochemical problems 
(un-synthesised drugs, pesticides and 
pharmacological compounds). (2) In expert system, 
Pereira et al. (1982) created an expert system for 
environmental resource evaluation called ORBI. It 
is a database system which provides information 
about intensive agriculture exploitation. It informs 
the user on climate, soil characteristics, planning 
permissions and geological data. (3) In design 
automation, Forrest and Edwards (1983) used 
PROLOG to translate one automation system 
(AFSM: Algorithmic Finite-State Machines) into 
another kind of automation (PLA: Programmable 
Logic Array). Barrow (1983) and Horstmann 
(1983) have developed different PROLOG 
programs to verify the correctness of digital 
hardware circuits and rules of circuit design. (4) In 
database interfaces, Warren and Pereira (1982) 
created a system called CHAT-80 which answers 
queries about geography.  

 
Historically speaking, the implementations above 
are still domain specific programs. Those 
applications exploit the immediate advantage of 
logic programming. It is important to understand 
that those applications are possible since individual 
computer scientists started to approach PROLOG as 
a viable alternative to issues they experienced in 
other language such as power, efficiency and 
procedural approaches.  
  
3.1 Computer Scientists’ Interest in PROLOG: 
Power, Efficiency and Procedural Approach 
 
PROLOG possesses advantage of manipulation, 
referred in computer scientists’ jargon as 
‘powerful’. For example, this programming 
language permits flexible stipulation of symbols in 
the data structure. The logical variables articulate 
the symbols without specifying them further than 
calling them ‘holes’. This is a considerable 
advantage when building up a program structure. It 
allows a division of labour whereby the computer 
scientist can specify the details of the data content 
and its structure afterward the details of the 
program structure. The logical variable provides 
parameters to construct the data structure in terms 
of selection and construction of objects.  
 
PROLOG symbol manipulation performs better 
than LISP regarding data. It is simpler to perform 
recursive procedures and surface syntax. PROLOG 
can control its sequential flow of operation by 
backtracking when encountering a logical dead-end 
in the program. This permits to localise and 
perform test on a specific sequence of code (called 
‘generate-and-test’, Clocksin, 1984: 93). LISP by 
contrast is unidirectional in its sequencing. If dead-
end happen, one has to reconsider the logic of the 
whole string of code from the beginning.  
 
PROLOG can be considered as a relational 
database with rules and facts. Its structure allows 
the programmer to change either the structure of the 
program, or the structure of the data by adding or 
removing clauses and data. Queries can be more 
sophisticated than in a sequential language 
precisely because they combine clause and data 
structures. This relational form of procedures 
allows multi-purpose use of a procedure. The 
programmer has to stipulate if a procedure is mono 
or multi-purpose.  
 
 
3.2 Remarks on elegant solution 
 
Clocksin (1984b) provides a beautiful example of 
the practical need for elegant solutions in 
programming. This is a topic of passionate debate 
among programmers precisely because it is at the 
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core of programmers’ definition of professional 
competence. Clocksin shows an example where a 
programmer has written all the variables of a 
PROLOG clause for getting information in a 
database in FORTRAN. Although this is possible, 
he demonstrates how one can shorten dramatically 
the code by using less FORTRAN features that are 
extra-logical to PROLOG features. The result is a 
better readability and it runs faster on the machine 
to compute the result.  
 
One can understand that seeing practical and 
elegant solutions corresponds to the level of fluency 
and experience one has in a given language. 
Obviously, the non-elegant solution, Clocksin is 
showing suggests that the programmer in question 
was more comfortable with FORTRAN coding and 
may not knew the alternative offered by PROLOG. 
The ability to use a language with skills affects the 
professional definition of the good programmers 
within the community. The implication of this 
professional definition leads to opportunities in 
terms of job placement, career mobility, research 
opportunities, contracts, etc.  
 
3.3 The Development of Logical and Parallel 
Architecture  
 
The maturation of the field offers new ways to 
approach PROLOG programming. Early 
development involves the emergence of individuals 
developing a line of inquiry. But subsequent 
developments of PROLOG, especially in building 
larger systems, shift the focus from personal 
dedication to the bureaucratic demands made upon 
organising teams of people and projects. Skills are 
implied but not the possession of a single 
individual. In the early 1990’s work started on 
parallel processing whereby one computer can use 
more than one processing unit to execute a 
program5. This possibility of using processing 
power is key to the development of local area 
network (LANs). A single program can run 
simultaneously in various places and distributed 
databases render available data stored in more than 
one computer system. The database system keeps 
tracks of the place where data are stocked in order 
to be able to retrieve them at any time for any given 
user.  
 
In this configuration, PROLOG solutions tend to 
integrate more bureaucratically defined sets of 
issues such as (1) databases, (2) parallel 
programming in distributed systems. In the domain 
of semantics research, effort concerns gathering 
ideas and means of investigation of other kinds of 
logic (not only based on first order predicate 
                                                 
5 Parallel processing is not to be confused with multitasking 
which is a partition of the processor itself in order to perform 
several programs at once.  

calculus but on temporal logic, modal logic, 
unifying logic, equational logic). Developers of 
PROLOG in parallel architecture focus on 
efficiency and seek to develop tools answering 
those demands such as module systems, 
polymorphic type systems, automatic debugging, 
software engineering development. 
 
Gupta et al (2001: 474) indicates that PROLOG has 
two main advantages for the development of 
parallel processing: (1) PROLOG has a clean 
semantics that makes compiling easier and the 
system run-time efficient, i.e. rapid and correct. It 
offers a clear articulation of variables. This is an 
important advantage since it is difficult to divide a 
program without interference of one part of the 
program with the other(s). 
 
For the programmer who works with parallel 
computing, PROLOG algorithm permits to treat 
every specification of a given problem as a variable 
unit coherent with the rest of the programming 
logic. In parallel computing, there is a potential 
issue of articulation of specific variables. This may 
induce a lot of irregular computation (due to 
problem generated by symbolism in algorithms and 
the complexity of data structure due to 
independence of some variables). In other words, 
there is an inflation of code procedures that are 
difficult to unify under the same logic (and 
therefore to keep track and eventually modify) in 
reason of the diversity of processes they 
accomplish. (2) It is faster to run a program since 
several parts of a single program are handled by 
different processors. This profits PROLOG as well 
as any other programming language.  
 
There are three approaches to parallel execution of 
logic programs: (1) the implicit exploitation of 
parallelism where parallel execution is done 
without the explicit intervention of the programmer 
and (2) the explicit construction of parallel solution 
with concurrent semantics or modification of 
PROLOG semantics. (3) The hybrid solution which 
consists in an extension of PROLOG language with 
possibility of detailed manual parallelisation (for 
example, &-PROLOG system (Hermenegildo and 
Greene (1991), CGE and ACE languages (Pontelli 
et al. 1995, 1996), DASWAM (shen, 1992).   
 
There is a tremendous amount of PROLOG 
implementation of explicit parallel solution. I will 
review some in the next section 3.4. For the sake of 
simplicity, I will only mention, below, implicit 
parallelisation, i.e. PROLOG parallel processing to 
implicit methods.  
 
The idea of implicit parallelisation is to treat 
indeterminism in PROLOG operational semantic to 
perform parallel operation without modifying its 
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overall semantics. To achieve this goal, the 
programmer translates non determined choices into 
parallel computation clauses. Gupta et al. (2001: 
482-3) present the three classical forms of 
parallelism (Conery and Kibler, 1981): 
 
1- And-parallelism6: when more than one sub-goal7 
solves a query, the system chooses some of those 
sub-goals to be executed in parallel: 
 
While (Query ≠ ø) do 
Begin 
Selectliteral B from Query; 
 
This is useful in list-processing applications to 
launch multiple searches, various constraint solving 
problems to take into account several variables at 
once (let say speed and aerodynamic) and system 
application. 
 
2- Or-parallelism: when more than one clause 
solves a query, the system chooses between several 
clauses to be executed in parallel: 
 
While (Query ≠ ø) do 
Begin 
Selectclause (H:- Body) from Program; 
 
This option is useful in applications exploring large 
search spaces via backtracking in expert systems, 
optimisation problem, certain kind of language 
parsing, and deductive database systems.  
 
3- Unification parallelism: when the argument of a 
goal can be associated with the argument of a 
clause: 
 
Argument 2 can be associated with argument 1. 
 
Unify(Arg1, Arg2) 
If (arg1 is a complex term f(t1, …, tn) and 
Arg 2 is a complex term g(s1, …, sm)) then 
If (f is equal to g and n is eaul to m) then unify (t1, s1), unify (t2, 
s2), …, unifiy (tn, sn)  
Else 
Fail  
 
Unification parallelism has not been a major 
research focus in parallel logic programming. 
Nevertheless, those techniques of parallelism are 
key features for the exploitation of parallel 
processing systems. This does not go without its 
problems of exploitation, which I will not review. 
For the sake of this paper, suffice it to say that the 
idea of exploiting parallelism is to achieve greater 
performance for programs in terms of speed of 

                                                 
6 There are several more kind of and-parallelism such as 
independent and-parallelism (IAP) and dependent and-
parallelism. 
7 A sub-goal is also called an atomic formula and, in PROLOG, 
a literal.  

execution. A lot of work has been done in the 
domain of shared memory allowing a single storage 
of data to be shared among users.  
 
During the mid-80’s, the development of interest in 
PROLOG explicit parallel solution has brought the 
development of new implementations such as 
PARLOG, GHC, KL1 and concurrent PROLOG. In 
1982, the Japanese fifth generation computer 
system project became one of the most prominent 
body of developers of those solutions.  
 
 
3.4 The Japanese Fifth Generation Computing 
Systems (FGCS) 
 
PROLOG was given new impetus when Japanese 
computer scientists and government research 
agencies launched their Fifth Generation 
Computing Systems (FGCS). This program (Moto-
aka, 1981; Furukawa, 1992; Fuchi et al. 1993; 
Englemore & Feigenbaum, 2000; Feigenbaum and 
McCorduck, 1979) brought over 100 researchers in 
a committee to investigate the development of new 
information processing technologies. The focus was 
on both knowledge information processing 
technology and improved parallel computer 
technology. In term of knowledge information 
processing, the idea was to consider PROLOG as a 
base to design programming language that will 
contribute to build a new software culture.  
 
The FGCS wanted to develop a completely new 
information system taking into account software 
compatibility with existing systems. Compatibility 
becomes an issue when one changes programming 
language. The FGCS idea is to consider logical 
programming as a foundation for different 
information processing including programming 
itself, software engineering, database and 
knowledge information processing.  In this context, 
PROLOG’s importance is contained in FGCS 
working hypothesis: how to use PROLOG to bridge 
the gap between knowledge information processing 
and parallel processing. 
 
I will not enter into any technical description of 
FGCS due to the fact that this integrated project 
covers a large amount of new software technology. 
This implies that PROLOG has to be approached 
along the line of the detailed organisational aspects 
of its project development implying the 
coordination of human resources and monitoring 
meetings with corrected technical guidelines. Ueda 
(1993) has provided the best account available of 
FGCS development reporting the technical feature 
of the project as well as the managerial decision 
and constraints that emerge out of it.  
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To get a sense of the complex integration FGCS 
project suppose, let us remind that computer 
scientists research were creating a completely new 
computing environment whereby logical 
programming played the role of integrator between 
(1) a language in concurrent logic called Guarded 
Horn Clauses (GHC), (2) a parallel computer called 
the Parallel Inference Machine (PIM) and (3) 
programming methods as well as applications in 
GHC. In this work environment, decision has been 
taken that PROLOG will serve to start the first 
Kernel Language (KL0). It appeared quickly that 
another language had to be designed (KL1) shifting 
toward concurrent logic to handle the original task 
of parallel computer architecture, programming and 
applications. This is during the conception of KL1 
that, in 1984, that Ueda proposed the Guarded Horn 
Clause (GHC) as a solution to computer scientists’ 
frustration to re-develop a parallel programming 
language. He proposed (1993: 65) Guarded Horn 
Clause as a solution to support GHC for their kernel 
language8 (KL1). The importance of GHC is to 
furnish the basic framework of concurrent 
computation where kernel languages are attached.  
 
The KL1 started as a language which dealt with 
issues of parallel processing in knowledge 
information (such as knowledge representation, 
knowledge base management, cooperative problem 
solving). The FGCS embraces concern on how to 
reconcile logic programming and object-orientated 
programming.  The research leads toward an 
alternative to PROLOG which is concurrent logic 
programming. In 1982, works on concurrent logic 
programming came out (Takeuchi, Shapiro) and 
influenced their decision to proceed further.  In 
1983, FGCS assembled a task group establishing 
that KL1 will be based on concurrent PROLOG 
with the following characteristics: (a) general 
purpose language accepting concurrent algorithm, 
(b) two syntactic constructs are added from the 
original logical programming framework, (c) 
coherent as the original logical programming and 
(d) possible adaptation of logic programming into 
concurrent logic programs.  
 
The amount of work that goes into the 
establishment of a new platform is phenomenal. 
This kind of work demanded, besides building up 
the experience and finding technical solution for its 
feasibility, demanded a careful management of the 
personal. It is obvious that any change or decision 
for another technical solution reduce to nothingness 
months or years of development. It also demands 
from the programmer themselves, even if offering a 
good technical solution, to get a committee 
agreement to integrate it into the guideline. It 
                                                 
8 The kernel language is a language that permits to link parallel 
hardware and application software. Three versions of Kernel 
Language have been issued (K0, K1 and K2).  

reminds the weight carried by the intermeshing 
between technical and managerial decision in large 
projects over the development itself.  
 
The FGCS interrogates the sustainability of 
research for long period of time. One can say that 
the Japanese Institute for New Generation 
Computer Technology (ICOT) where the FGCS 
took place has created an environment increasing 
the technical know-how of computer scientists, it 
also put constraints on the personal interests of 
many of them who did not aim at working on 
concurrent logic programming or which research 
activities were not linked to concurrency and 
parallelism. Technically speaking, the design of the 
Kernel language was a history of simplification 
passing from concurrent PROLOG to GHC and 
from GHC to flat GHC.  
 
Due to the acceleration of computing R&D, it 
suggest that political decision to launch such 
project such as FGCS comprises a fine 
understanding of the implication of large research 
endeavour. For example, FGCS has to face two 
problems: the adoption of FGCS solutions and 
systems by other constituencies and (2) its 
economical viability. Retrospectively, the 
integration of new technology is better secured 
from already existing and commercially successful 
products. It demands the coordination of 
international corporations and industry leading to 
agreements between each other. Finally, it suggests 
that individual realisations are subsumed under the 
technico-commercial umbrella.  
 
 
3.5 The Use of Other Language and Non-logical 
Augmentation 
 
During the early 80’s, there was a number of 
attempts to use other languages in conjunction with 
PROLOG (Santane-Toth 1982, Szeredi, 1982). 
From the hardware point of view developers could 
use the DEC VAX computer series with VMX or 
UNIX operating system which support compilers 
for three languages POP-11, PROLOG and small 
LISP. Those developers were engaged in the 
exploration of hardware possibilities thanks to the 
software. In this particular case, Mellish and Hardy 
(1984: 117) wanted to develop a model for a hybrid 
compiler. They indicated that PROLOG was not the 
best program to write screen editor or network 
interface controllers but conventional application 
would gain by adopting PROLOG for CAD 
systems, statistics packages or relational databases.  
 
The development of multi-language environment 
envisaged to develop logic programs with 
procedural language such as LISP or POP-2. 
Robinson and Sibert (1982) have developed 
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LOGLISP, Genesereth and Lenat (1980) MRS, and 
Komorowski (1982) QLOG have integrated logic 
programming with LISP. The motivation for those 
developments was to offer the programmer with 
multi-language programming systems. Developers 
have different objectives when programming. For 
Mellish and Hardy, the development of a hybrid 
version of PROLOG demands the definition of a 
clear model on how PROLOG data structure and 
control mesh with procedural language. 
 
They critically advance that providing PROLOG 
with convenient connection to LISP is a complete 
solution. To justify their research endeavour, 
Mellish and Hardy indicate several advantages to 
adopt their position: (1) creation of backtracking 
point in the procedural language (2) flexible control 
of PROLOG solution by procedural language (3) 
remove the asymmetry between PROLOG and 
POP-11 where both languages are compiled by the 
same virtual machine. (4) The avoidance of 
building syntax and built-in predicates for 
PROLOG.  
 
The early stage of Mellish and Hardy’s researches 
has brought the implementation of POPLOG virtual 
machine, i.e. the formal logic of a common 
compiler between POP-11 and PROLOG. The 
development of a semantic called ‘continuation-
passing’ is not simply the implementation of 
‘subroutine calling’. It is exploiting the Warren 
(1977) principle whereby one can represent the 
head of a clause as in-line instruction. For example 
(Mellish & Hardy, 1984) in PROLOG the head of a 
clause is: 
 
(Here we are dealing with connecting (unify) 
elements (x and m with y) in a database structure.) 
 
Unify (y, conspair (x, m), continuation) 
 
In POPLOG, the unification of elements is done in-
line9 (rather than creating a control stack frame for 
UNIFY in PROLOG). 
 
In classic PROLOG, the unification of data 
demands the building of concrete data structure. As 
we have seen in the section 2.1 if a clause mentions 
a list structure in its head, the list has to be 
constructed in order to match an item, a list of 
items. In contrast, Mellish and Hardy’s POPLOG is 
an implementation of the Warren (1980) principle 
of ‘task recursion optimising’. This model 
represents explicitly the structure of the data (how 
data relate to each other). The data structures are 
not mentioned unless it is necessary to specify a 
variable that is not instantiated. In this sense, the 

                                                 
9 See annex for Mellish and Hardy’s example of hybrid program 
created in POPLOG.  

head of a clause plays a different role than 
PROLOG’s declarative procedure. Instead, it 
performs a test on the type of data that can be failed 
or accepted.  
 
3.6 Micro-PROLOG: the development of PROLOG 
in education 
 
In AI, there was a large movement of computer 
scientists emulated by the lead of Seymour Papert 
who saw in programming a way to address issues of 
education. For example, in his 1980’s book 
Mindstorm, he defends the idea that micro-worlds 
(well defined environment that could be subject to 
computing through the use of programming 
interfaces) are incubators of knowledge. His 
educational view is a fairly straightforward 
extension of Newell’s heuristics for problem 
solving. He wants to find areas of computation 
applied to principles that he sees as educational. In 
1982 (Ennals, 1982) and 1984, Ennals, Briggs & 
Brought, (1984) have identified similar ideas of 
using PROLOG programming as a micro-world 
without an explicit educational theory. It is at the 
occasion of works on PARLOG (parallel 
implementation of PROLOG) and other work on 
databases and parallel architectures that their 
interest arose to provide relatively simple interfaces 
to be able to use PROLOG. Ennals, Briggs and 
Broughts (1984: 380) raise three concerns when it 
comes to educating people to use PROLOG. (1) 
One has to understand the problem of learning 
PROLOG logic, (2) the logical extension from the 
original PROLOG are necessary for pedagogical 
investigations and (3) users’ tools must be 
developed to match users’ development of logical 
programs.  
 
(1) Ennals, Briggs & Brought, (1984) worked with 
children as well as adults. They composed their 
pool of amateurs in PROLOG. The implementation 
of an educative version was done in micro-
PROLOG (McCabe, 1980; Clark, Ennals and 
MCCabe, 1981, Ennals, 1982). One must remember 
that the hardware, therefore the availability of 
Micro-PROLOG is an issue to consider. It has to be 
available across a large range of micro-computers. 
An interface program was developed permitting 
easy usage. Ennals (1984: 378) gives an example of 
simplified notation used to program with it:  
 
Cow eats grass 
Grass is –a plant 
X is herbivore if x eats y 
 And y is-a plant 
 
The simple program is running on a different 
machine and different implementation of PROLOG 
(either micro-PROLOG or PARLOG). Ennals 
reports that he uses this program either on 
microcomputer or mainframe.  
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Ennals et al. (1984) reports, unsurprisingly from my 
point of view, that the different representation of 
operator and variables may become a difficulty for 
the user. In fact, the amateur is unaware of the 
syntax that presides to PROLOG. But programming 
in PROLOG is an exercise in formal syntax. The 
problem is obviously one of translation from 
computer scientists’ practice and jargon into a 
pedagogic teaching of syntax. Ennals (1984: 379) 
indicates that issues for amateur in PROLOG are: 
� The problem of PROLOG rules in terms of 

‘informal specification to executable 
specification in Horn clause logic’.  

� Starting to learn the operation on database, 
because the amateur can be a user of databases.  

� Ennals, Briggs & Brought offered a simplified 
notation system dealing with adding 
information to the database (rather than 
creating new assertions.) It is the beginning of 
teaching the amateur to program.  

� Rather than use an instruction to find missing 
information, the amateur learns to use 
symmetric dialogue technique. For example:  

 
X citizen-of y if x born-in y 
User: where John citizen-of x? 
Machine:  where john born-in x? 
User: England 
Machine: John citizen-of England. 
 
(2) The objective of educating people in using 
PROLOG is to show the different option of logic 
(in the jargon ‘the power of logic’) by extending 
PROLOG facilities. It is done by building other 
predicates than the standard full predicate logic on 
standard PROLOG (Kowalski, 1974, 1979, 1981, 
1982a&b). Micro-PROLOG adds three predicates: 
negation by failure, Is-All and For-All primitives. 
 
The idea of adding primitives is to provide the user 
with the ability to deal with reading and printing 
facilities, to access the internal logic of the 
program, to produce queries at all level of the 
program (object or meta-level), non-textual option 
(graphic, interactive graphics, sound, iconographic 
programming and logical spreadsheet). 
 
(3) In 1984, there was already a concern for 
matching the advance of other systems (for 
example PC/MS DOS (Disk Operating System) in 
terms of screen and line editor and modules for the 
development of other structures. As we have seen 
in the sections before, flexibility of implementation 
is (as a result in interest in the program) necessary 
for implementing facilities. It seems to me Ennals, 
Briggs & Brough go beyond the simple amateur 
when they suggest that work can be done on the 
operating system and other parts of the host 
machine. For example, they suggest the user should 
be able to engage in printing, word processing, 

directory & memory checking. It supposes that 
functional knowledge developed the proper 
identification of how to act upon them. I suggest 
that Ennals, Briggs and Brought move beyond the 
simple amateur skills toward those of a tester. In 
their view, the user is somebody who would search 
for solutions for flexible error messages, varied 
conversational exchange with PROLOG modules 
and other user-interface systems (Hammond, 1983). 
In early human computing interaction research 
domain, Agre (1995) recalled that for programmers, 
the user is concerned with issue of access, 
improvement or exploration of system solution. It 
suggests that users can directly engage in object or 
meta-level customisation in PROLOG without 
resorting to PASCAL or machine code. Researches 
developed in those areas but the development of 
micro-PROLOG remained an affair for full time 
specialists. It is interesting to note that PROLOG 
specialists have used amateurs as ‘statistical 
indicators’ for their system test. It demonstrated to 
PROLOG developers that its improvements could 
be done more fruitfully by developing other strings 
of declarative sentences rather than concentrating 
on the debugging of anomalous cases. Ennals, 
Briggs and Brought suggests that parallel 
implementation in logic will solve most of those 
problems.   
 
 
4. CONCLUSION 
 
4.1. Logical Programming, Artificial 

Intelligence critiques and its implications 
for Social Studies of Technology.  

 
I have made no attempt in this paper to investigate 
how, for example, the Horn’s theory translates 
algebraic formulae into sentences. At the 
ideological level where professional practice 
becomes professional psychosis (E.C Hughes, 
1984), one is allowed to warn against the danger to 
see computer scientists treating formal grammar of 
syntax or semantics as a description of a language 
in working order. This philosophical confusion 
between formal grammar and ordinary language 
(Button et al. 1995: 247) applies in the same way to 
PROLOG specialists dealing with its arithmetic and 
syntax. I have a tendency to treat computer 
scientists’ primary cognitivism as a side effect of 
their profession rather than the core of their 
practices. Of course, cognitivism across discipline 
brings insidious and long lasting effects upon the 
understanding of social phenomenon such as 
technological development. It may be possible that 
PROLOG has introduced in the mind of many 
computer scientists, Gottlob Frege’s idea that 
language logic is in effect co-extensive of 
arithmetical forms. To a certain degree, the 
confusion between what computer scientists take 
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language to be and the logical options offered by 
arithmetical hypotheses are constitutive of their 
research object and way of working out solutions. 
In other words, one deals with professional 
practices and not with confusion held by an outsider 
of their work scene. The implication of these 
remarks are threefold: (1) the demands of 
knowledge on those who engage in social studies of 
science and technology (next paragraph) (2) the 
achievement of a fair grasp of the epistemic 
practices of the professionals (section 4.2) and (3) 
the grasp of practitioners’ practices within the right 
environment of understanding reporting the 
dynamics of the profession rather than the effect of 
their mental attitude (section 4.3).  
 
For social scientists, the difficulty in studying 
computer programs is their own basic knowledge 
about programming and its limitated experience in 
applied settings. Clocksin and Mellish’s (1981) 
good advice is to program. In doing this, one can 
de-code its technical vocabulary from its 
appearance of everyday expression into its technical 
domain of belonging. For the non-specialist, the 
technical jargon may certainly be unclear but more 
importantly, the technical work itself remains 
incomprehensible. It demands some training, 
learning and acquaintance with the machine 
functions. For computer scientists, the use of 
language is metaphoric by default not by choice as 
talking about and in terms of the machine function 
is the same thing for the good practical reason to be 
able to communicate the function to each other. As 
it is difficult to communicate what the machine 
does with symbols or equations in our everyday 
communications, one has to rely on the jargon 
which is metaphorical by definition. ‘Language 
parsing’ reflects different arithmetic methods of 
association between words or set of words, 
‘declarative sentence’ is a statement, ‘problem 
solving’ is a deductive procedures. In PROLOG, 
‘statement’, ‘clause’ and ‘variables’ are based on 
formal syntax and arithmetic. As a high level 
language, its meaning can be either practice or 
reported from the function to which practitioners 
have put them to use. In this sense, the survey is 
trying to reflect some of the concerns that animate 
the professional community. The first noticing is 
that PROLOG is not simply a tool in view of 
achieving a result but also an object of research in 
itself. This help to define the boundaries of the 
PROLOG research communities according to their 
work products: the implementations and the context 
that make their research activities real.  
 
4.2. Computer sciences’ practical 

epistemologies. 
 
One can take the view that PROLOG is a paradigm 
(Kuhn, 1962) of its own, considering that arithmetic 

logic is a form of programming. From the point of 
view of the studies of science and technology, this 
does not assume an internal versus external (Pinch, 
1986: 14) picture of technology whereby the 
epistemological decision would take place inside 
the brains of computer scientists and eventually, in 
a distributed way, among their colleagues assuming 
a similar mind set. There is a commonality in 
knowledge and PROLOG communities are formed, 
as many other academic communities, on a 
competence, i.e. a series of knowledge one acquires 
through education and professional practices.  
 
The paradigm of PROLOG programming contains 
certainly a view of language and intelligence that 
are criticisable. I suggest that those views also 
belong to the computer scientists’ communities. In 
this sense, they define professional hope and 
expectation in future development. It is beside the 
point to decide if those hopes have foundation in 
technical possibilities. Those hopes are also part of 
the rhetoric of science and technology which plays 
its parts in the formulation of research grant 
applications, the public interest in projects and the 
political importance attached to it within or outside 
the community of practitioners.   
 
4.3. Professional Dynamics. 
 
In the 1970’s, at the early stage of the shaping of 
PROLOG, the developers had to prove the worth of 
their endeavour to themselves and other colleagues 
established in the field. Taking a view on PROLOG 
from the perspective of early Artificial Intelligence 
is informative in this respect. It shows how 
PROLOG as a new trend of thought has to be 
defined vis-à-vis already established research 
programs (LISP, PLANNER…) and compare to 
professionals having or establishing their own 
status in computing. During the 1980’s, the number 
of professionals working on PROLOG has 
expended. PROLOG has offered numerous 
opportunities for computer scientists to reconsider 
its language as a resourceful domain of 
experimentation. It has been approached in many 
different ways, from the arithmetical point of view 
of theorem proving (Kowalski), the mechanisation 
of logic (Robinson) or address issues of 
development (Colmerauer & Roussel, 1992) and 
implementations (Clark and Tärnlund, 1982; 
Campbell, 1984) all of which shape research 
communities and their projects.   
 
Clocksin and Mellish’s (1981) first textbook is a 
good indication of a coming generation of 
international students and developers. The take off 
of PROLOG in the Europe, Israel, Canada, Japan 
and Australia (but not the US) suggests high 
professional mobility which corresponds to the 
rapid development of the profession in general. 
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PROLOG has served different purposes in 
academic research, large industrial projects, state 
funded programs, personal related computing and 
education. In the UK, it seems that an active 
academic environment supported the expansion of 
PROLOG computing through research projects, 
development and implementations.  
 
In the 1990s, one can perceive professional trend 
traversing PROLOG and programmers’ interests in 
implementations. They reflect the socio-economical 
forces shaping their coming project. The last phases 
of development of parallel computing indicate the 
beginning of the unification of different techniques. 
Effective bureaucratisation of the profession 
demands a tight management well informed of 
R&D economic and market value. For example, the 
FGCS suggests that basing decision making on 
technical prospective is risky for technological 
development itself.  Today, unified technologies 
show that large R&D endeavour demands 
diversified financial back-up. The use of private 
bank loan or public support is explored along the 
line of using revenues of intermediary products 
available in the market.  
 
The dynamism of computing shows that thinking in 
terms of large explanatory framework cannot cover 
the complexity of development which acts under 
financial, competitive and organisational 
constraints. In the social studies of computer 
science, specific software developments have been 
largely under-studied. It remains that computer 
scientists themselves have done most of the 
reference works in the history of computing. It is 
certainly the best source of information one may 
expect, although not exempt of critics. It demands 
from social studies of technology to formulate 
accordingly the epistemic frameworks within which 
computer scientists’ current practices develop. In 
this paper, I proposed a preliminary survey 
sensitising scholars to the infra-level of change 
within programming practices seen as a knowledge 
domain.  
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 ANNEX: 
 
This is Mellish and Hardy (1984) example of the 
unification of elements in POPLOG by combining 
PROLOG notation with task recursion notation:  
 
Define member (x, y, continuation) 
Vars t; 
Deref (x) -> x; 
Deref (y) -> y; 
 
(;;;deref gets the value of a PROLOG variable if it has one ;;; if 
not, it gets the last ‘ref’ in the chain) 
 
if isref (y) then  
conspair (x, consref (‘undef’)) -> cont (y); 
continuation (  ); 
‘undef’ -> cont (y) 
Elseif ispair (y) then 
Deref (front (y)) -> t; 
If isref (x) then 
t-> cont (x); 
continuation (  ); 
‘undef’ ->cont (x) 
Elseif isref (t) then 
X -> cont (t); 
Continuation (  ); 
‘undef’ -> cont (t) 
Else 
Unify (x, t, continuation) 
Endif 
Endif  
;;; code for second clause of definition enddefine;  
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