
TeamEthno-Online Issue 2, June 2006, 85-100

Aspects of PROLOG History: Logic Programming and
Professional Dynamics

Philippe Rouchy, Blekinge Institute of Technology, Sweden.

Philippe.Rouchy@bth.se

PLAN:

1. Introduction.
2. Historical background.
2.1. PROLOG in the history of AI
2.2. PROLOG origin: Predicate Calculus and the

definition of clause, the Horn clause and
resolution theorem proving.

2.3. Remarks about Syntax.
2.4. PROLOG and logical programming.
2.5. Liberal interpretation of syntax and innovation

in algorithms
3. Some examples of disseminations of PROLOG in

computer sciences
3.1 Computer Scientists’ Interest in PROLOG:

Power, Efficiency and Procedural Approach
3.2 Remarks on Elegant Solution
3.3 The Development of Logical and Parallel

Architecture
3.4 The Japanese Fifth Generation Computing

Systems (FGCS)
3.5 The Use of Other Language and Non-logical

Augmentation.
3.6 Micro-PROLOG: the development of

PROLOG in education
4. Conclusion.
4.1. Logical Programming, Artificial Intelligence

critiques and its implications for Social Studies
of Technology.

4.2. Computer Science Practical Epistemologies.
4.3. Professional Dynamics.

1. INTRODUCTION

This paper presents aspects of PROLOG history in
a three part argument: (1) the birth of an algorithm
and the historical background of artificial
intelligence and PROLOG and its relation with
logical programming, (2) different research done on
PROLOG in order to expand, adapt or transform its
features for implementing different data structures
and system architecture. Notably, I present the
development of logical and parallel architecture
(Kowalski, Clark and Gregory, 1982), hybrid
systems such as POPLOG using elements of
PROLOG with LISP and the use of other languages
and non-logical augmentation (Mellish and Hardy,
1982) and some reflection on computer and
education dealing with the definition of the user in
relation to the development of micro-PROLOG
(Ennals, 1982, 1984) and (3) a reflection on the
infra-transformation of the computing field in terms
of professional dynamics and its implication for a

social studies of technology grasp of computer
sciences along the line of its epistemic practices.

Since 1970, PROLOG has been through several
evolutions and implementations reflecting the
modern history of formal mathematical thinking in
computing. It has been made possible largely by
disseminating a working version of PROLOG,
known as the Edinburgh version, which became
ISO standard in 2003. In this paper, I suggest it is
not enough to appreciate PROLOG’s role in
computing communities from its practical results
(such as relational databases, problem solving,
design automation, symbolic equation solving,
biochemical structure analysis etc.). A more fruitful
road demands to understand the process linking the
operational framework of implementation with
PROLOG logical structure.

My paper seeks to convey a sense of research
dynamics that went into PROLOG
implementations1 through a selected review of
historical cases. It approaches research as a process
not a product. The arrangement between real
condition of implementation and PROLOG internal
structure is a subtle domain. It delimits computer
scientists’ area of implementations and skills
developments distinguishing and animating a
specific professional community. This is a strong
suggestion for the sociologist of science to
understand not only the basic features of PROLOG
in order to perceive the shapes of implementations
but also to convey the way in which technical
objectives and hardware prospects of exploitation
determine PROLOG implementations. If this
research objective is attained, one should have a
sense of computer scientists’ epistemic framework
of activities. The depth of this concern is revealed
by the way one understands how PROLOG formal
computing logic takes its shape from the ordinary
features of computing systems’ exploitations.

2. HISTORICAL BACKGROUND

2.1 PROLOG in the history of AI

1 Ehud Shapiro (1989) and Gupta et al (2001) deserves special
mention by providing encyclopaedic surveys of families of
PROLOG, respectively concurrent logic programming and
parallel PROLOG programs.

 85

TeamEthno-Online Issue 2, June 2006, 85-100

In 1972, Alain Colmerauer and his colleagues Bob
Pasero and Philippe Roussel (Roussel, 1975)
invented the programming language PROLOG at
the University of Marseilles, France. PROLOG
demands the programmer to specify task in logic
rather than conventional instructions. Hence, its
name PROLOG stands for Programming in Logic
(Programmation en Logique in French). The
software implements man-machine communication
in natural language with a question – answering
system. It has a similar objective as Terry
Winograd’s use of micro-PLANNER (1972), but
the novelty comes from the syntactic-arithmetic
liaison for programming rather than semantic.

In the 1960’s Artificial Intelligence research
context, early computer scientists were
investigating the possibilities for computers to
prove theorems automatically (Bowen, 1979).
Several ambitious programs of research sought to
explore the possibilities of human reasoning in
problem solving, means-ends analysis, and rational
choices theory working out programming structures
in LISP (Newell, 1958). John McCarthy, LISP
creator, devised to program by setting instructions
in declarative form. LISP was the first program
constituted of instructions which involved sub-
instructions and, this, virtually ad finitum. Hewitt’s
(1970) program PLANNER offers an alternative for
instructing the computer based on a procedural plan
which demands programming by pattern of goal
and assertion. Sussman, Charniak (1970) Micro-
PLANNER offered the possibilities to deal with a
more complex structure of information by working
with assertions and goals (Winograd, 1972). From
Hewitt’s view point, one can see PROLOG has
reinvented a subset of Micro Planner, i.e. its
assertion component. In fact, the story of PROLOG
is not so linear, as it does not follow from the early
development of mainly US development in
Artificial Intelligence. One of the issues with the
complexity of assertion in programming was the
issue of control structure. For example, Colmerauer
noticed (Kowalski, 1988: 41) that it is impossible to
operate the list ‘append’ in PLANNER without
resorting to LISP and this may bring an issue of
coherence since one has to deal with large lists, or
complex lists of information.

The original idea of PROLOG was to program not
with a set of instructions but directly with formal
arithmetic logic as a total solution2. This idea has its
own history. In 1970, Colmerauer et al. (1993)
came in touch with research done (Hutchins, 2001)
at Montreal. Canadian computer scientists worked
on a syntactic transfer system for English-French

2 The formulation of this idea is to be found in Robert Kowalski
(1982) ‘Logic as a computer language’ in K.L. Clark and S-A
Tärnlund (eds.) Logic Programming, Academic Press, London:
3-18.

translation. From the TAUM project (Traduction
Automatique de l’Université de Montréal) comes
two major achievements: (1) the Q-system
formalism for manipulating linguistic strings and
trees and (2) the Météo system for translating
weather forecasts. This preliminary research on
natural language communication was combined
with Kowalski’s research on automated theorem-
proving (Kowalski, 1971). Colmerauer, invited
Kowalski to discuss the logic of their question-
answer system. This followed up on Philippe
Roussel and Jean Trudel’s (University of Montreal)
works on the deductive aspects of language parsing
and its relation to the SL-resolution theorem prover.
Kowalski worked out with Colmerauer
(Colmerauer, 1982) a way to represent grammar by
using logic and to parse sentences by using the
principle of resolution (see next section).
Colmerauer and his team worked with resolution, as
a uniform general-purpose theorem.

In 1971, Colmerauer and his colleagues’ aimed at
developing a deduction machine based on text
written in French. The first step toward the logical
system in PROLOG as we know it is the research
on a preliminary system of natural language
communication (Colmerauer, 1971). It consists in
connecting logical formulae and French sentences
with 50 rules written in Q system (a paraphrase
generator). Colmerauer uses his work on Q-
grammar (Colmerauer, 1970) to device another
logical method of representing language. He sought
to avoid associative logic (like the LISP function,
see Boyer & Moore, 1975) by a formal
representation of strings of language coming from
his work on Q-grammar. In 1972, the second step
securing the arithmetical aspect of logic took place.
Thanks to work done from Kowalski’s SL-
resolution prover (linear resolution by selection
function), it helped finalise the connection between
natural language processing and automated
problem-solving.

The creation of a language working with arithmetic
logic demands notational adaptation. Robinson’s
(1969) notation became the standard for
programming in PROLOG. For example, a function
in lambda-calculus notation such as:

√[x(x+1)]

Can be expressed as an application notation such
as:

Γx(SQRT((TIMEx)((PLUSx)ONE)))

To finish on the relationship between PROLOG and
Artificial intelligence, I would like the reader to
sensitise himself to the context of development: (1)
the 1970s artificial intelligence development in

 86

TeamEthno-Online Issue 2, June 2006, 85-100

regard of the hardware and software of the time. (2)
Its implication for the unsettled distinction between
heuristics and algorithm in early artificial
intelligence and the place of PROLOG vis-à-vis it.
(1) It is essential to realise that limits in
programming reflected limits of the processor
power and memory. In 1971, PROLOG early
implementations (Colmerauer, Roussel, 1992: 2)
were done, in France, with an IBM 360-44 in
Marseilles University with 900 K of memory and
an operating system without virtual memory. This
machine put 1 Mb of memory available to execute
the programs and an operator console as interface
between user and programs.
(2) The early work on machine and program
demanded from the computer scientists to find a
way for the machine to execute instructions. Early
computer scientists were working in applied
mathematics departments whereby they started by
matching their knowledge of mathematical
procedures to a language that the machine could
process. In this context, the issue of the difference
between heuristics and algorithm (Campbell, 1985)
became obvious. To clarify the contrast, I would
say that different philosophies of the implication of
mathematics for computing came into play. I would
suggest that Artificial Intelligence researchers such
as Allen Newell assumed a cognitive and
behaviourist theory of computing. His research in
heuristics starts with the idea that arithmetic
reasoning and thinking process are essentially
identical and therefore their matching is the way to
go in the exploration and development of machine
process. I would suggest that PROLOG developers
may certainly hold a cognitivist theory of reasoning
because they start with an applied perspective of
arithmetical logic to computing restricted features
of natural language. In this sense, Newell’s
heuristic belongs to Skinner’s behaviourist
paradigm whereas Colmerauer’s algorithm belongs
to Horn’s arithmetic paradigm.

2.2. PROLOG origin: Predicate Calculus and

the definition of clause, the Horn clause
and resolution theorem proving.

(1) Predicate calculus and the definition of clause
form.

According to Colmerauer & Roussel (1993: 26),
PROLOG’s form of logic is called Predicate
Calculus. PROLOG integrates in the calculation of
its clauses according to Robinson’s (1965, 1970)
principles of first order calculus predicate. It allows
the treatment of a statement in arithmetic as a logic
program. The logic program (Shapiro, 1989: 415) is
a finite set of definite clauses. The first order
calculus is the basic arithmetic that permits to
elaborate the vocabulary of PROLOG (or any
logical program.) as a statement and the terms of

the statement. In each PROLOG clause, the
programmer has to decide its vocabulary in terms of
a set of predicates (a set of data), a function symbol
(their relations), a goal (corresponding to the quest).

In predicate calculus, objects are called terms.
Terms may be composed of a constant symbol, a
variable symbol and a compound term. For
example, a basic proposition in PROLOG:

‘Mary is human’ is written

Human (Mary)
‘Human’ is a constant symbol.

Man likes wine:
Likes (man, wine)
‘man’ is a variable symbol.

X owns donkey (x):
Owns (x, donkey (x))
‘x’ is a compound term.

In PROLOG, those linguistic propositions are
called a goal if starting a program and an argument
if belonging to a larger argument structure. If one
wants to build up further proposition from the
compound term (see ‘x’ above), logician and
computer scientists use either logical connectives
(not, and, or, implies and is equivalent to) or/and
universal (for all v, …) and existential quantifiers
(there exist v such that …).

The essential work done by Colmerauer and his
team was to transform this form of logic into a
programming language. Robinson’s first order
calculus forms the resolution principle at the heart
of PROLOG. It performs the basic arithmetical
logic guiding the declarative language. In LISP,
FORTRAN or COBOL, the program is made of
lines of code or sets of procedural instruction. In
PROLOG, the program starts by defining clauses
and sub-clauses, i.e. the domain of the problem. A
question equals a set of calculation of the predicates
of the clauses. It is a bit like a micro-world of
logical procedures, a territory of sub-procedures on
which basic calculation furnish the answer to a
search procedure (a question).

Those terms in PROLOG are also called PROLOG
clauses. Clauses are essential to understand the
relation between logic and PROLOG. The form of
clause specifies the different kind of relationship
between variables within a clause. I will not review
them here (see Clocksin and Mellish, 1984: 240-6).
Those forms are essential for creating hybrid
systems and implementing other forms of logic.

(2) Horn Clause and Resolution Theorem Proving.

 87

TeamEthno-Online Issue 2, June 2006, 85-100

To understand the resolution principle, one can say
that every statement in natural language is written
in a way to perform mechanical theorem proving.
Alan Robinson’s resolution principle offers a rule
of inference permitting one proposition to follow
another. The programmer’s work is to decide which
proposition implies another, and how a valid
conclusion can be proceed automatically.

The resolution principle serves to treat a hypothesis
as true or false according to arithmetic. Clocksin &
Mellish set up a perfect example (1981, 2003: 249).
One may try to show that Arthur is the king by
setting up a problem is those terms:

‘If every person respects somebody then that person
is a king’:

(1) person (f1(X)); king (X):-
(2) king(Y):-respects(f1(Y),Y).

‘every person respects Arthur’:
(3) respect (Z, Arthur) :- person (Z)

The resolution in 2 steps goes:
‘Every person respects the king Arthur’
In arithmetical terms, you resolve the term 2 by the
term 3, by matching them (called unification).

(4) King (Arthur):- person (f1(Arthur))

‘Arthur is the king’
(5) king(Arthur); king (Arthur):-.

Let us notice that even if the matching of one side
of a proposition with another is called unification,
this does not cover all the cases of unification in
PROLOG. Here, in our example, we rely on
ordinary language to understand the logic of the
relationship between the terms of the clause. In
applied cases, unification may represent parts of a
database, the dealing of information in parallel
between two computers, or anything else relevant to
apply.

There are also clauses that are restrictive. Horn’s
clause is one of them. The Horn clause3 is a logical
statement of the form:

A1, A2, … An.

where and A is called a positive literal
representing, in PROLOG, a unique statement

3 The name "Horn Clause" comes from the logician Alfred Horn
in his article (1951) "On sentences which are true of direct
unions of algebras", Journal of Symbolic Logic, 16, 14-21. His
theory of clause is the paradigm of PROLOG whereby sentences
are considered to literally equate algebraic correspondence.

symbolised by a letter. In PROLOG, this statement
corresponds to a headless Horn Clause:

:- A1, A2, …, An.
A ‘headless’ literal is a statement of the form:
:-bachelor(x)

A ‘headed’ literal is as follows:
Bachelor(X):-male(X), unmarried(X)

In PROLOG, one can use linear input resolution as
a way to say that one headless proposition is solved
by the next proposition in line. The following
proposition is considered to be a hypothesis which
applied to the case solves the theorem. If we have
the following proposition:

the mother (of the couple X and Y), X is the mother
of John:

:- mother (john, X), mother (X, Y)

And being a mother (of the couple U, V) is being
the female parent:

Mother (U, V):-parent(U,V), female(V)

Then, the mother (of the couple X, Y) is a female X
who is a parent of John.

:-parent(john, X), female(X), mother(X,Y).

In PROLOG, those statements can take four
different forms and, therefore, play different
connecting roles : (1) to be a rule, (2) to be a fact or
unit, (3) to be a negated goal and (4) a be a null
clause. Complexity of the basic clause depends on
the predicate one used in a program.

I have superficially overviewed the Horn clause to
provide the reader with a sense of how PROLOG
specialists define the way to attach a list of qualities
(sub-clauses) to a definite clause. PROLOG can be
defined as a collection of Horn clauses (Kahn &
Carlsson, 1984: 117). This programming method is
considered powerful because it offers formal means
to draw inferences from a simple logical unit to
more and more complex sub-units. This in turn
allows carrying further correlations between the
components of the sub-units.

2.3 Remarks about Syntax.

One important way one can appreciate the
maturation of one language is by noticing the way
communities of practitioners have tried to
implement it. Different syntactic versions of
PROLOG have started from various practical
configurations of cases. Since 1972, in the early,

 88

TeamEthno-Online Issue 2, June 2006, 85-100

prototypic, developments of PROLOG by
Colmerauer and his team, many computer scientists
have added their stone to the edifice. One can trace
the expansion of PROLOG to the 1980s whereby
one sees the development of several types of
syntax. For example, the original Marseilles
interpreter (Kluzniak, 1984) is followed by the
Exeter PROLOG (Fogelholm, 1984) and the
Edinburg syntax (Clocksin, 1984a).

The Edinburg syntax needs special mention as it
emerged over the years as the standard PROLOG
language. This is certainly due to the active work of
Clocksin and Mellish proposing a standard in their
textbook Programming in PROLOG. This
normalisation of PROLOG syntax is essential for
the diffusion and constitution of a community of
active programmers. PROLOG does not stipulate
the kind of syntax one should use. Clocksin (1984:
94) provides a convenient frame within which one
can start arranging clauses according to three
arithmetical components4 (constant, structures and
variables). The Edinburgh syntax served as a guide
from which the 2003 ISO norm of PROLOG is now
established.

2.4 PROLOG and Logical Programming.

PROLOG today benefits from the software
implementation work of many computer scientists
(Warren, 1979, Clocksin, 1984: 94). It is a program
that is efficient to use if one want to work out
problems by representing objects symbolically
according to a type of relationships. PROLOG
(Colmerauer, 1985) is composed of a set of
procedures whose execution depends upon both (a)
the kind of predicate it is made of (the kind of
logical relationship) and (b) the kind of clauses (the
type of assertion) associated being either facts (a
‘declaration’: no procedure to perform) or rules (a
‘procedure’: a procedure to perform) represented by
a term.

In the first level, we have a logical articulation
clauses-predicate forming the procedures.

4

 1- Constants (also called ‘atoms’) are numerical data like
integers (like 33456), floating point numbers (like 12.0), and
negative integers (like -13), a sign or an operator (like +, >, ?, $
etc.) or alphanumerical (like a12). A constant working as an
operator ‘+’ in the case of X + 12 is written in PROLOG +(X,
12).
2- Structures (also called ‘complex terms’ or ‘compound terms’)
are made of constants data (called ‘functor’) and one or more
components (the number of elements called in mathematical
term ‘arity’). A structure is written in PROLOG: go(N,L) which
means search L proprieties (to be defined) with the N properties
(to be defined).
3- Variables are other terms which are constituted of an upper-
case character or an underscored character followed by a string
of numbers.

For example: meal (a, m, d) where a stands for
appetizer, m for main and d for dessert.

In the second level, we have a logical articulation of
the predicate themselves. This corresponds to the
composition of a meal.
For example:

Main (m)
(m = sole)
(m = tuna)
(m = pork)
(m = beef)

 Appetizer (a)
(a = radishes)
(a = pâté)

 Dessert (d)
(d = fruit)
(d = cake)

Given that we have 4 main dishes, we have 16
possible combination of dishes (in arithmetic terms
is 4²= 16.)

Those clauses can be defined in the jargon as ‘a
fact’ i.e. have no procedure to perform, or can be ‘a
rule’ implying to perform a procedure. The
computer system performs a procedure called ‘a
goal’ by matching the different argumentative
combination constituting the clause to the clause
itself. This is considered as ‘answering a question
or a quest’ about the predicate. It is clear, in the
interpretive context of logical programming that
‘answering a question’ is a metaphor for
performing a matching procedure. In our case, the
quest is: produce a light meal with less than 10
units of calories.

The way to answer this question is equivalent to
manipulate terms of arithmetic through the
parameters of the clause (Horn, 1951) i.e. according
to logical definition of the clauses. In this case, one
has to: (1) associate caloric units to each
components’ of the meal, (2) define a light meal as
under 10 units of calories, (3) perform basic
arithmetic to calculate the caloric value of a meal,
by associating each possible meal component with
each possible caloric values under 10 (4) get the
result of the light meals.

(1) Caloric value defines 8 units as follows:
units (beef, 3)
units (fruit, 1)
units (cake, 5)
units (pâté, 6)
units (pork, 7)
units (radishes, 1)
units (sole, 2)
units (tuna, 4)

 89

TeamEthno-Online Issue 2, June 2006, 85-100

(2) Define the light meal:
PROLOG computes sums of 2 numbers
(corresponding to 2 units). So the light meal, who is
composed of 3 courses (appetizer, main and
dessert) is calculated in two steps called ‘little sum’
and ‘little successor’ (intermediary sums) which,
cumulated, stays at under 10 calories.

(3) Perform the arithmetic:
The first intermediary sum (little sum) calculates
the appetizer and the main such as x + y = z with z
< 10.

Light-meal (a, m, d) -> meal (a, m, d)
� Meal is a triplet a, m, d.
� The number of units of appetizers is x.
� The number of units of main is y.
� X + y = z. with z < 10.

The second intermediary sum is to calculate v = z +
u.

� The number of units of dessert is z.

� Z + u = v. v < 10.

(4) Give the result of the composition and number
(7) of light meals:

Light-meal (a, m, d) ?
(a = radishes, m = sole, d = cake)
(a = radishes, m = sole, d = fruit)
(a = radishes, m = tuna, d = fruit)
(a = radishes, m = pork, d = fruit)
(a = radishes, m = beef, d = cake)
(a = radishes, m = beef, d = fruit)
(a = pate, m = sole, d = fruit).

Putting aside, the way PROLOG developed, which
reflects the natural history of Colmerauer and his
colleagues’ ideas, PROLOG open up for two
important areas of inquiry marking its development:
(1) implementation of other logical systems and (2)
implementation of different proof procedures.
Logic programming defines an epistemic field of
research in computing formal logic whereby every
computer scientists develop a sub-area of formal
logic tested against the constraints imposed by the
machine.

2.3. Liberal interpretation of syntax and

innovation in algorithms

Clocksin (1984a) is certainly an active PROLOG
promoter. He has reviewed areas where PROLOG
has been put into use, namely (1) relational data
bases and expert systems, (2) mathematical logic,
theorem proving and semantics, (3) abstract
problem solving and plan formation, (4) natural

language understanding, (5) architectural design,
site planning and logistics, (6) symbolic equation
solving, compiler writing, (7) biochemical analysis
and drug design. I propose to review some aspects
that made PROLOG disseminations a reality. I
propose to review 5 domains distinguishing
PROLOG: (a) the technical advantages of
PROLOG vis-à-vis LISP. This comparison
underlines the viable alternative for programming
more complex sets of data by, what I call, structural
rather than sequential programming. (b) Those
advantages of PROLOG software architecture show
in the possibilities for other computer scientists to
develop logical and parallel architecture. (c) The
constitution of hybrid systems (like POPLOG) by
combining PROLOG with sequential processing
like LISP or object orientated processing like
SMALLTALK. (d)The combination of other kind
of hybrid version of PROLOG by using other
language and using non-logical augmentation of the
program and (e) the creation of micro-PROLOG as
the development of PROLOG for education and
end-users purposes (see 3.6).

3. SOME EXAMPLES OF DISSEMINATIONS

OF PROLOG IN COMPUTER SCIENCES

In 1982, the debate between declarative versus
procedural programming tends to confirm that
PROLOG was a language that people were taking
up. In the field of programming, there is a lot of
invention but few long term survivors due to the
change of hardware capacity and the corresponding
software. PROLOG offers a software architecture
that is a sort of tautological system. The program
states facts and rules which define a problem and,
in the same time, are programming instructions to
solve the problem.

Kowalski (1988: 38) calls them declarative and
procedural functions. Logical schemes representing
data combines information along a linear procedure
of first order logic. This way of combining syntax
and semantics constituted the programming
language of which LISP is the paradigmatic
reference. The advantage of sequential logical
programming is its definition in terms of inference
rules, a clear formal semantics (linkage between set
of words) and simple notation to create the
knowledge base. The drawback of the sequential
scheme of programming is the lack of
organisational principle for the data constituting the
knowledge base. Colmerauer (1985) says of
PROLOG that it is ‘a formalism for defining
knowledge independent of the method of
computation.’

PROLOG and the diffusion of logical programming
took place around the 1980’s. Researchers
established the field with (1) textbooks on logic

 90

TeamEthno-Online Issue 2, June 2006, 85-100

programming, mathematical reasoning and
PROLOG programming (Clocksin & Mellish,
1981; Clark & Tärnlund, 1982), (2) the organisation
of workshop and conferences and (3) the creation of
a journal of logical programming. It is noticeable
that concise reference manual are essential for other
practitioners to take up the task, try it and
eventually expend it and apply it to its own set of
problem. Computer scientists work with the
manuals, the available published research papers on
the topic and word of mouth between colleagues.

The essential point of the following section is that
formal logical possibilities as well as practical one
can largely extend original PROLOG capabilities.
R Ennals J Briggs and D. Brough (1984) rightly
observe that one can modify PROLOG logical
machine by dealing explicitly with the Horn Clause
subset of predicate logic. This is the application to
specific domains and issues in the real world that
specifies which sub-set of predicate logic computer
scientists should use. The applications provide the
occasion to suggest amendment to the formal
logical and the basic Edinburgh syntax. At this
stage, I rely on Clocksin’s review (1984b) of
PROLOG applications presented in 4 main
domains: expert systems, interface of databases,
design automation, and scientific tools. Research
teams worked to develop special application with
different contractors (industrial production,
biological research, agricultural planning and
information databases).

 (1) In scientific tool, Sterling et al. (1982) came up
with a tool of computer-aided algebra called ‘Press
system’, derived from earlier research on another
system called ‘Mecho’ (Bundy et al., 1982). The
system aims at finding solutions of simultaneous
transcendental equations. Darvas et al. (1983) have
created a program that calculates derivations of
regression models used in biochemical problems
(un-synthesised drugs, pesticides and
pharmacological compounds). (2) In expert system,
Pereira et al. (1982) created an expert system for
environmental resource evaluation called ORBI. It
is a database system which provides information
about intensive agriculture exploitation. It informs
the user on climate, soil characteristics, planning
permissions and geological data. (3) In design
automation, Forrest and Edwards (1983) used
PROLOG to translate one automation system
(AFSM: Algorithmic Finite-State Machines) into
another kind of automation (PLA: Programmable
Logic Array). Barrow (1983) and Horstmann
(1983) have developed different PROLOG
programs to verify the correctness of digital
hardware circuits and rules of circuit design. (4) In
database interfaces, Warren and Pereira (1982)
created a system called CHAT-80 which answers
queries about geography.

Historically speaking, the implementations above
are still domain specific programs. Those
applications exploit the immediate advantage of
logic programming. It is important to understand
that those applications are possible since individual
computer scientists started to approach PROLOG as
a viable alternative to issues they experienced in
other language such as power, efficiency and
procedural approaches.

3.1 Computer Scientists’ Interest in PROLOG:
Power, Efficiency and Procedural Approach

PROLOG possesses advantage of manipulation,
referred in computer scientists’ jargon as
‘powerful’. For example, this programming
language permits flexible stipulation of symbols in
the data structure. The logical variables articulate
the symbols without specifying them further than
calling them ‘holes’. This is a considerable
advantage when building up a program structure. It
allows a division of labour whereby the computer
scientist can specify the details of the data content
and its structure afterward the details of the
program structure. The logical variable provides
parameters to construct the data structure in terms
of selection and construction of objects.

PROLOG symbol manipulation performs better
than LISP regarding data. It is simpler to perform
recursive procedures and surface syntax. PROLOG
can control its sequential flow of operation by
backtracking when encountering a logical dead-end
in the program. This permits to localise and
perform test on a specific sequence of code (called
‘generate-and-test’, Clocksin, 1984: 93). LISP by
contrast is unidirectional in its sequencing. If dead-
end happen, one has to reconsider the logic of the
whole string of code from the beginning.

PROLOG can be considered as a relational
database with rules and facts. Its structure allows
the programmer to change either the structure of the
program, or the structure of the data by adding or
removing clauses and data. Queries can be more
sophisticated than in a sequential language
precisely because they combine clause and data
structures. This relational form of procedures
allows multi-purpose use of a procedure. The
programmer has to stipulate if a procedure is mono
or multi-purpose.

3.2 Remarks on elegant solution

Clocksin (1984b) provides a beautiful example of
the practical need for elegant solutions in
programming. This is a topic of passionate debate
among programmers precisely because it is at the

 91

TeamEthno-Online Issue 2, June 2006, 85-100

core of programmers’ definition of professional
competence. Clocksin shows an example where a
programmer has written all the variables of a
PROLOG clause for getting information in a
database in FORTRAN. Although this is possible,
he demonstrates how one can shorten dramatically
the code by using less FORTRAN features that are
extra-logical to PROLOG features. The result is a
better readability and it runs faster on the machine
to compute the result.

One can understand that seeing practical and
elegant solutions corresponds to the level of fluency
and experience one has in a given language.
Obviously, the non-elegant solution, Clocksin is
showing suggests that the programmer in question
was more comfortable with FORTRAN coding and
may not knew the alternative offered by PROLOG.
The ability to use a language with skills affects the
professional definition of the good programmers
within the community. The implication of this
professional definition leads to opportunities in
terms of job placement, career mobility, research
opportunities, contracts, etc.

3.3 The Development of Logical and Parallel
Architecture

The maturation of the field offers new ways to
approach PROLOG programming. Early
development involves the emergence of individuals
developing a line of inquiry. But subsequent
developments of PROLOG, especially in building
larger systems, shift the focus from personal
dedication to the bureaucratic demands made upon
organising teams of people and projects. Skills are
implied but not the possession of a single
individual. In the early 1990’s work started on
parallel processing whereby one computer can use
more than one processing unit to execute a
program5. This possibility of using processing
power is key to the development of local area
network (LANs). A single program can run
simultaneously in various places and distributed
databases render available data stored in more than
one computer system. The database system keeps
tracks of the place where data are stocked in order
to be able to retrieve them at any time for any given
user.

In this configuration, PROLOG solutions tend to
integrate more bureaucratically defined sets of
issues such as (1) databases, (2) parallel
programming in distributed systems. In the domain
of semantics research, effort concerns gathering
ideas and means of investigation of other kinds of
logic (not only based on first order predicate

5 Parallel processing is not to be confused with multitasking
which is a partition of the processor itself in order to perform
several programs at once.

calculus but on temporal logic, modal logic,
unifying logic, equational logic). Developers of
PROLOG in parallel architecture focus on
efficiency and seek to develop tools answering
those demands such as module systems,
polymorphic type systems, automatic debugging,
software engineering development.

Gupta et al (2001: 474) indicates that PROLOG has
two main advantages for the development of
parallel processing: (1) PROLOG has a clean
semantics that makes compiling easier and the
system run-time efficient, i.e. rapid and correct. It
offers a clear articulation of variables. This is an
important advantage since it is difficult to divide a
program without interference of one part of the
program with the other(s).

For the programmer who works with parallel
computing, PROLOG algorithm permits to treat
every specification of a given problem as a variable
unit coherent with the rest of the programming
logic. In parallel computing, there is a potential
issue of articulation of specific variables. This may
induce a lot of irregular computation (due to
problem generated by symbolism in algorithms and
the complexity of data structure due to
independence of some variables). In other words,
there is an inflation of code procedures that are
difficult to unify under the same logic (and
therefore to keep track and eventually modify) in
reason of the diversity of processes they
accomplish. (2) It is faster to run a program since
several parts of a single program are handled by
different processors. This profits PROLOG as well
as any other programming language.

There are three approaches to parallel execution of
logic programs: (1) the implicit exploitation of
parallelism where parallel execution is done
without the explicit intervention of the programmer
and (2) the explicit construction of parallel solution
with concurrent semantics or modification of
PROLOG semantics. (3) The hybrid solution which
consists in an extension of PROLOG language with
possibility of detailed manual parallelisation (for
example, &-PROLOG system (Hermenegildo and
Greene (1991), CGE and ACE languages (Pontelli
et al. 1995, 1996), DASWAM (shen, 1992).

There is a tremendous amount of PROLOG
implementation of explicit parallel solution. I will
review some in the next section 3.4. For the sake of
simplicity, I will only mention, below, implicit
parallelisation, i.e. PROLOG parallel processing to
implicit methods.

The idea of implicit parallelisation is to treat
indeterminism in PROLOG operational semantic to
perform parallel operation without modifying its

 92

TeamEthno-Online Issue 2, June 2006, 85-100

overall semantics. To achieve this goal, the
programmer translates non determined choices into
parallel computation clauses. Gupta et al. (2001:
482-3) present the three classical forms of
parallelism (Conery and Kibler, 1981):

1- And-parallelism6: when more than one sub-goal7
solves a query, the system chooses some of those
sub-goals to be executed in parallel:

While (Query ≠ ø) do
Begin
Selectliteral B from Query;

This is useful in list-processing applications to
launch multiple searches, various constraint solving
problems to take into account several variables at
once (let say speed and aerodynamic) and system
application.

2- Or-parallelism: when more than one clause
solves a query, the system chooses between several
clauses to be executed in parallel:

While (Query ≠ ø) do
Begin
Selectclause (H:- Body) from Program;

This option is useful in applications exploring large
search spaces via backtracking in expert systems,
optimisation problem, certain kind of language
parsing, and deductive database systems.

3- Unification parallelism: when the argument of a
goal can be associated with the argument of a
clause:

Argument 2 can be associated with argument 1.

Unify(Arg1, Arg2)
If (arg1 is a complex term f(t1, …, tn) and
Arg 2 is a complex term g(s1, …, sm)) then
If (f is equal to g and n is eaul to m) then unify (t1, s1), unify (t2,
s2), …, unifiy (tn, sn)
Else
Fail

Unification parallelism has not been a major
research focus in parallel logic programming.
Nevertheless, those techniques of parallelism are
key features for the exploitation of parallel
processing systems. This does not go without its
problems of exploitation, which I will not review.
For the sake of this paper, suffice it to say that the
idea of exploiting parallelism is to achieve greater
performance for programs in terms of speed of

6 There are several more kind of and-parallelism such as
independent and-parallelism (IAP) and dependent and-
parallelism.
7 A sub-goal is also called an atomic formula and, in PROLOG,
a literal.

execution. A lot of work has been done in the
domain of shared memory allowing a single storage
of data to be shared among users.

During the mid-80’s, the development of interest in
PROLOG explicit parallel solution has brought the
development of new implementations such as
PARLOG, GHC, KL1 and concurrent PROLOG. In
1982, the Japanese fifth generation computer
system project became one of the most prominent
body of developers of those solutions.

3.4 The Japanese Fifth Generation Computing
Systems (FGCS)

PROLOG was given new impetus when Japanese
computer scientists and government research
agencies launched their Fifth Generation
Computing Systems (FGCS). This program (Moto-
aka, 1981; Furukawa, 1992; Fuchi et al. 1993;
Englemore & Feigenbaum, 2000; Feigenbaum and
McCorduck, 1979) brought over 100 researchers in
a committee to investigate the development of new
information processing technologies. The focus was
on both knowledge information processing
technology and improved parallel computer
technology. In term of knowledge information
processing, the idea was to consider PROLOG as a
base to design programming language that will
contribute to build a new software culture.

The FGCS wanted to develop a completely new
information system taking into account software
compatibility with existing systems. Compatibility
becomes an issue when one changes programming
language. The FGCS idea is to consider logical
programming as a foundation for different
information processing including programming
itself, software engineering, database and
knowledge information processing. In this context,
PROLOG’s importance is contained in FGCS
working hypothesis: how to use PROLOG to bridge
the gap between knowledge information processing
and parallel processing.

I will not enter into any technical description of
FGCS due to the fact that this integrated project
covers a large amount of new software technology.
This implies that PROLOG has to be approached
along the line of the detailed organisational aspects
of its project development implying the
coordination of human resources and monitoring
meetings with corrected technical guidelines. Ueda
(1993) has provided the best account available of
FGCS development reporting the technical feature
of the project as well as the managerial decision
and constraints that emerge out of it.

 93

TeamEthno-Online Issue 2, June 2006, 85-100

To get a sense of the complex integration FGCS
project suppose, let us remind that computer
scientists research were creating a completely new
computing environment whereby logical
programming played the role of integrator between
(1) a language in concurrent logic called Guarded
Horn Clauses (GHC), (2) a parallel computer called
the Parallel Inference Machine (PIM) and (3)
programming methods as well as applications in
GHC. In this work environment, decision has been
taken that PROLOG will serve to start the first
Kernel Language (KL0). It appeared quickly that
another language had to be designed (KL1) shifting
toward concurrent logic to handle the original task
of parallel computer architecture, programming and
applications. This is during the conception of KL1
that, in 1984, that Ueda proposed the Guarded Horn
Clause (GHC) as a solution to computer scientists’
frustration to re-develop a parallel programming
language. He proposed (1993: 65) Guarded Horn
Clause as a solution to support GHC for their kernel
language8 (KL1). The importance of GHC is to
furnish the basic framework of concurrent
computation where kernel languages are attached.

The KL1 started as a language which dealt with
issues of parallel processing in knowledge
information (such as knowledge representation,
knowledge base management, cooperative problem
solving). The FGCS embraces concern on how to
reconcile logic programming and object-orientated
programming. The research leads toward an
alternative to PROLOG which is concurrent logic
programming. In 1982, works on concurrent logic
programming came out (Takeuchi, Shapiro) and
influenced their decision to proceed further. In
1983, FGCS assembled a task group establishing
that KL1 will be based on concurrent PROLOG
with the following characteristics: (a) general
purpose language accepting concurrent algorithm,
(b) two syntactic constructs are added from the
original logical programming framework, (c)
coherent as the original logical programming and
(d) possible adaptation of logic programming into
concurrent logic programs.

The amount of work that goes into the
establishment of a new platform is phenomenal.
This kind of work demanded, besides building up
the experience and finding technical solution for its
feasibility, demanded a careful management of the
personal. It is obvious that any change or decision
for another technical solution reduce to nothingness
months or years of development. It also demands
from the programmer themselves, even if offering a
good technical solution, to get a committee
agreement to integrate it into the guideline. It

8 The kernel language is a language that permits to link parallel
hardware and application software. Three versions of Kernel
Language have been issued (K0, K1 and K2).

reminds the weight carried by the intermeshing
between technical and managerial decision in large
projects over the development itself.

The FGCS interrogates the sustainability of
research for long period of time. One can say that
the Japanese Institute for New Generation
Computer Technology (ICOT) where the FGCS
took place has created an environment increasing
the technical know-how of computer scientists, it
also put constraints on the personal interests of
many of them who did not aim at working on
concurrent logic programming or which research
activities were not linked to concurrency and
parallelism. Technically speaking, the design of the
Kernel language was a history of simplification
passing from concurrent PROLOG to GHC and
from GHC to flat GHC.

Due to the acceleration of computing R&D, it
suggest that political decision to launch such
project such as FGCS comprises a fine
understanding of the implication of large research
endeavour. For example, FGCS has to face two
problems: the adoption of FGCS solutions and
systems by other constituencies and (2) its
economical viability. Retrospectively, the
integration of new technology is better secured
from already existing and commercially successful
products. It demands the coordination of
international corporations and industry leading to
agreements between each other. Finally, it suggests
that individual realisations are subsumed under the
technico-commercial umbrella.

3.5 The Use of Other Language and Non-logical
Augmentation

During the early 80’s, there was a number of
attempts to use other languages in conjunction with
PROLOG (Santane-Toth 1982, Szeredi, 1982).
From the hardware point of view developers could
use the DEC VAX computer series with VMX or
UNIX operating system which support compilers
for three languages POP-11, PROLOG and small
LISP. Those developers were engaged in the
exploration of hardware possibilities thanks to the
software. In this particular case, Mellish and Hardy
(1984: 117) wanted to develop a model for a hybrid
compiler. They indicated that PROLOG was not the
best program to write screen editor or network
interface controllers but conventional application
would gain by adopting PROLOG for CAD
systems, statistics packages or relational databases.

The development of multi-language environment
envisaged to develop logic programs with
procedural language such as LISP or POP-2.
Robinson and Sibert (1982) have developed

 94

TeamEthno-Online Issue 2, June 2006, 85-100

LOGLISP, Genesereth and Lenat (1980) MRS, and
Komorowski (1982) QLOG have integrated logic
programming with LISP. The motivation for those
developments was to offer the programmer with
multi-language programming systems. Developers
have different objectives when programming. For
Mellish and Hardy, the development of a hybrid
version of PROLOG demands the definition of a
clear model on how PROLOG data structure and
control mesh with procedural language.

They critically advance that providing PROLOG
with convenient connection to LISP is a complete
solution. To justify their research endeavour,
Mellish and Hardy indicate several advantages to
adopt their position: (1) creation of backtracking
point in the procedural language (2) flexible control
of PROLOG solution by procedural language (3)
remove the asymmetry between PROLOG and
POP-11 where both languages are compiled by the
same virtual machine. (4) The avoidance of
building syntax and built-in predicates for
PROLOG.

The early stage of Mellish and Hardy’s researches
has brought the implementation of POPLOG virtual
machine, i.e. the formal logic of a common
compiler between POP-11 and PROLOG. The
development of a semantic called ‘continuation-
passing’ is not simply the implementation of
‘subroutine calling’. It is exploiting the Warren
(1977) principle whereby one can represent the
head of a clause as in-line instruction. For example
(Mellish & Hardy, 1984) in PROLOG the head of a
clause is:

(Here we are dealing with connecting (unify)
elements (x and m with y) in a database structure.)

Unify (y, conspair (x, m), continuation)

In POPLOG, the unification of elements is done in-
line9 (rather than creating a control stack frame for
UNIFY in PROLOG).

In classic PROLOG, the unification of data
demands the building of concrete data structure. As
we have seen in the section 2.1 if a clause mentions
a list structure in its head, the list has to be
constructed in order to match an item, a list of
items. In contrast, Mellish and Hardy’s POPLOG is
an implementation of the Warren (1980) principle
of ‘task recursion optimising’. This model
represents explicitly the structure of the data (how
data relate to each other). The data structures are
not mentioned unless it is necessary to specify a
variable that is not instantiated. In this sense, the

9 See annex for Mellish and Hardy’s example of hybrid program
created in POPLOG.

head of a clause plays a different role than
PROLOG’s declarative procedure. Instead, it
performs a test on the type of data that can be failed
or accepted.

3.6 Micro-PROLOG: the development of PROLOG
in education

In AI, there was a large movement of computer
scientists emulated by the lead of Seymour Papert
who saw in programming a way to address issues of
education. For example, in his 1980’s book
Mindstorm, he defends the idea that micro-worlds
(well defined environment that could be subject to
computing through the use of programming
interfaces) are incubators of knowledge. His
educational view is a fairly straightforward
extension of Newell’s heuristics for problem
solving. He wants to find areas of computation
applied to principles that he sees as educational. In
1982 (Ennals, 1982) and 1984, Ennals, Briggs &
Brought, (1984) have identified similar ideas of
using PROLOG programming as a micro-world
without an explicit educational theory. It is at the
occasion of works on PARLOG (parallel
implementation of PROLOG) and other work on
databases and parallel architectures that their
interest arose to provide relatively simple interfaces
to be able to use PROLOG. Ennals, Briggs and
Broughts (1984: 380) raise three concerns when it
comes to educating people to use PROLOG. (1)
One has to understand the problem of learning
PROLOG logic, (2) the logical extension from the
original PROLOG are necessary for pedagogical
investigations and (3) users’ tools must be
developed to match users’ development of logical
programs.

(1) Ennals, Briggs & Brought, (1984) worked with
children as well as adults. They composed their
pool of amateurs in PROLOG. The implementation
of an educative version was done in micro-
PROLOG (McCabe, 1980; Clark, Ennals and
MCCabe, 1981, Ennals, 1982). One must remember
that the hardware, therefore the availability of
Micro-PROLOG is an issue to consider. It has to be
available across a large range of micro-computers.
An interface program was developed permitting
easy usage. Ennals (1984: 378) gives an example of
simplified notation used to program with it:

Cow eats grass
Grass is –a plant
X is herbivore if x eats y
 And y is-a plant

The simple program is running on a different
machine and different implementation of PROLOG
(either micro-PROLOG or PARLOG). Ennals
reports that he uses this program either on
microcomputer or mainframe.

 95

TeamEthno-Online Issue 2, June 2006, 85-100

Ennals et al. (1984) reports, unsurprisingly from my
point of view, that the different representation of
operator and variables may become a difficulty for
the user. In fact, the amateur is unaware of the
syntax that presides to PROLOG. But programming
in PROLOG is an exercise in formal syntax. The
problem is obviously one of translation from
computer scientists’ practice and jargon into a
pedagogic teaching of syntax. Ennals (1984: 379)
indicates that issues for amateur in PROLOG are:
� The problem of PROLOG rules in terms of

‘informal specification to executable
specification in Horn clause logic’.

� Starting to learn the operation on database,
because the amateur can be a user of databases.

� Ennals, Briggs & Brought offered a simplified
notation system dealing with adding
information to the database (rather than
creating new assertions.) It is the beginning of
teaching the amateur to program.

� Rather than use an instruction to find missing
information, the amateur learns to use
symmetric dialogue technique. For example:

X citizen-of y if x born-in y
User: where John citizen-of x?
Machine: where john born-in x?
User: England
Machine: John citizen-of England.

(2) The objective of educating people in using
PROLOG is to show the different option of logic
(in the jargon ‘the power of logic’) by extending
PROLOG facilities. It is done by building other
predicates than the standard full predicate logic on
standard PROLOG (Kowalski, 1974, 1979, 1981,
1982a&b). Micro-PROLOG adds three predicates:
negation by failure, Is-All and For-All primitives.

The idea of adding primitives is to provide the user
with the ability to deal with reading and printing
facilities, to access the internal logic of the
program, to produce queries at all level of the
program (object or meta-level), non-textual option
(graphic, interactive graphics, sound, iconographic
programming and logical spreadsheet).

(3) In 1984, there was already a concern for
matching the advance of other systems (for
example PC/MS DOS (Disk Operating System) in
terms of screen and line editor and modules for the
development of other structures. As we have seen
in the sections before, flexibility of implementation
is (as a result in interest in the program) necessary
for implementing facilities. It seems to me Ennals,
Briggs & Brough go beyond the simple amateur
when they suggest that work can be done on the
operating system and other parts of the host
machine. For example, they suggest the user should
be able to engage in printing, word processing,

directory & memory checking. It supposes that
functional knowledge developed the proper
identification of how to act upon them. I suggest
that Ennals, Briggs and Brought move beyond the
simple amateur skills toward those of a tester. In
their view, the user is somebody who would search
for solutions for flexible error messages, varied
conversational exchange with PROLOG modules
and other user-interface systems (Hammond, 1983).
In early human computing interaction research
domain, Agre (1995) recalled that for programmers,
the user is concerned with issue of access,
improvement or exploration of system solution. It
suggests that users can directly engage in object or
meta-level customisation in PROLOG without
resorting to PASCAL or machine code. Researches
developed in those areas but the development of
micro-PROLOG remained an affair for full time
specialists. It is interesting to note that PROLOG
specialists have used amateurs as ‘statistical
indicators’ for their system test. It demonstrated to
PROLOG developers that its improvements could
be done more fruitfully by developing other strings
of declarative sentences rather than concentrating
on the debugging of anomalous cases. Ennals,
Briggs and Brought suggests that parallel
implementation in logic will solve most of those
problems.

4. CONCLUSION

4.1. Logical Programming, Artificial

Intelligence critiques and its implications
for Social Studies of Technology.

I have made no attempt in this paper to investigate
how, for example, the Horn’s theory translates
algebraic formulae into sentences. At the
ideological level where professional practice
becomes professional psychosis (E.C Hughes,
1984), one is allowed to warn against the danger to
see computer scientists treating formal grammar of
syntax or semantics as a description of a language
in working order. This philosophical confusion
between formal grammar and ordinary language
(Button et al. 1995: 247) applies in the same way to
PROLOG specialists dealing with its arithmetic and
syntax. I have a tendency to treat computer
scientists’ primary cognitivism as a side effect of
their profession rather than the core of their
practices. Of course, cognitivism across discipline
brings insidious and long lasting effects upon the
understanding of social phenomenon such as
technological development. It may be possible that
PROLOG has introduced in the mind of many
computer scientists, Gottlob Frege’s idea that
language logic is in effect co-extensive of
arithmetical forms. To a certain degree, the
confusion between what computer scientists take

 96

TeamEthno-Online Issue 2, June 2006, 85-100

language to be and the logical options offered by
arithmetical hypotheses are constitutive of their
research object and way of working out solutions.
In other words, one deals with professional
practices and not with confusion held by an outsider
of their work scene. The implication of these
remarks are threefold: (1) the demands of
knowledge on those who engage in social studies of
science and technology (next paragraph) (2) the
achievement of a fair grasp of the epistemic
practices of the professionals (section 4.2) and (3)
the grasp of practitioners’ practices within the right
environment of understanding reporting the
dynamics of the profession rather than the effect of
their mental attitude (section 4.3).

For social scientists, the difficulty in studying
computer programs is their own basic knowledge
about programming and its limitated experience in
applied settings. Clocksin and Mellish’s (1981)
good advice is to program. In doing this, one can
de-code its technical vocabulary from its
appearance of everyday expression into its technical
domain of belonging. For the non-specialist, the
technical jargon may certainly be unclear but more
importantly, the technical work itself remains
incomprehensible. It demands some training,
learning and acquaintance with the machine
functions. For computer scientists, the use of
language is metaphoric by default not by choice as
talking about and in terms of the machine function
is the same thing for the good practical reason to be
able to communicate the function to each other. As
it is difficult to communicate what the machine
does with symbols or equations in our everyday
communications, one has to rely on the jargon
which is metaphorical by definition. ‘Language
parsing’ reflects different arithmetic methods of
association between words or set of words,
‘declarative sentence’ is a statement, ‘problem
solving’ is a deductive procedures. In PROLOG,
‘statement’, ‘clause’ and ‘variables’ are based on
formal syntax and arithmetic. As a high level
language, its meaning can be either practice or
reported from the function to which practitioners
have put them to use. In this sense, the survey is
trying to reflect some of the concerns that animate
the professional community. The first noticing is
that PROLOG is not simply a tool in view of
achieving a result but also an object of research in
itself. This help to define the boundaries of the
PROLOG research communities according to their
work products: the implementations and the context
that make their research activities real.

4.2. Computer sciences’ practical

epistemologies.

One can take the view that PROLOG is a paradigm
(Kuhn, 1962) of its own, considering that arithmetic

logic is a form of programming. From the point of
view of the studies of science and technology, this
does not assume an internal versus external (Pinch,
1986: 14) picture of technology whereby the
epistemological decision would take place inside
the brains of computer scientists and eventually, in
a distributed way, among their colleagues assuming
a similar mind set. There is a commonality in
knowledge and PROLOG communities are formed,
as many other academic communities, on a
competence, i.e. a series of knowledge one acquires
through education and professional practices.

The paradigm of PROLOG programming contains
certainly a view of language and intelligence that
are criticisable. I suggest that those views also
belong to the computer scientists’ communities. In
this sense, they define professional hope and
expectation in future development. It is beside the
point to decide if those hopes have foundation in
technical possibilities. Those hopes are also part of
the rhetoric of science and technology which plays
its parts in the formulation of research grant
applications, the public interest in projects and the
political importance attached to it within or outside
the community of practitioners.

4.3. Professional Dynamics.

In the 1970’s, at the early stage of the shaping of
PROLOG, the developers had to prove the worth of
their endeavour to themselves and other colleagues
established in the field. Taking a view on PROLOG
from the perspective of early Artificial Intelligence
is informative in this respect. It shows how
PROLOG as a new trend of thought has to be
defined vis-à-vis already established research
programs (LISP, PLANNER…) and compare to
professionals having or establishing their own
status in computing. During the 1980’s, the number
of professionals working on PROLOG has
expended. PROLOG has offered numerous
opportunities for computer scientists to reconsider
its language as a resourceful domain of
experimentation. It has been approached in many
different ways, from the arithmetical point of view
of theorem proving (Kowalski), the mechanisation
of logic (Robinson) or address issues of
development (Colmerauer & Roussel, 1992) and
implementations (Clark and Tärnlund, 1982;
Campbell, 1984) all of which shape research
communities and their projects.

Clocksin and Mellish’s (1981) first textbook is a
good indication of a coming generation of
international students and developers. The take off
of PROLOG in the Europe, Israel, Canada, Japan
and Australia (but not the US) suggests high
professional mobility which corresponds to the
rapid development of the profession in general.

 97

TeamEthno-Online Issue 2, June 2006, 85-100

PROLOG has served different purposes in
academic research, large industrial projects, state
funded programs, personal related computing and
education. In the UK, it seems that an active
academic environment supported the expansion of
PROLOG computing through research projects,
development and implementations.

In the 1990s, one can perceive professional trend
traversing PROLOG and programmers’ interests in
implementations. They reflect the socio-economical
forces shaping their coming project. The last phases
of development of parallel computing indicate the
beginning of the unification of different techniques.
Effective bureaucratisation of the profession
demands a tight management well informed of
R&D economic and market value. For example, the
FGCS suggests that basing decision making on
technical prospective is risky for technological
development itself. Today, unified technologies
show that large R&D endeavour demands
diversified financial back-up. The use of private
bank loan or public support is explored along the
line of using revenues of intermediary products
available in the market.

The dynamism of computing shows that thinking in
terms of large explanatory framework cannot cover
the complexity of development which acts under
financial, competitive and organisational
constraints. In the social studies of computer
science, specific software developments have been
largely under-studied. It remains that computer
scientists themselves have done most of the
reference works in the history of computing. It is
certainly the best source of information one may
expect, although not exempt of critics. It demands
from social studies of technology to formulate
accordingly the epistemic frameworks within which
computer scientists’ current practices develop. In
this paper, I proposed a preliminary survey
sensitising scholars to the infra-level of change
within programming practices seen as a knowledge
domain.

References

P. Agre (1995) ‘Conceptions of the user in
computer systems design’, in Peter J. Thomas (ed.)
The Social and Interactional Dimensions of
Human-Computer Interfaces, Cambridge
University Press, 67-106.

K. Bowen (1979) ‘Prolog’, ACM/CSR-ER:
Proceedings of the 1979 annual conference, ACM,
NY: 14-23.

G. Button, J. Coulter, J. Lee and W. Sharrock
(1995) Computer, Mind and Conduct, Polity Press,
Oxford.

K. Clark and Gregory (1986) ‘PARLOG: A parallel
implementation of PROLOG, ACM Trans. On
Programming Languages Systems, vol. 8, no. 1: 1-
49.

K. Clark et al. (1982) K.L. Clark FG McCabe & P.
Hammond ‘PROLOG: A language for
Implementing Expert Systems’ in Hayes et al.
(1982) PJ Hayes D Michie and YH Pao (eds.)
Machine Intelligence 10: Intelligent Systems
Practice and Perspective, Chichester, Ellis
Horwood.

W. F. Clocksin and C. Mellish ([1981]2003)
Programming in PROLOG, Springer-Verlag, New
York.

W. F. Clocksin (1984a) ‘An Introduction to
PROLOG’, in Tim O’Shea & Marc Eisenstadt (ed.),
Artificial Intelligence: Tools, Techniques and
Applications, Harper and Row Publishers, New
York: 1-21.

W. F. Clocksin (1984b) ‘Logic Programming and
PROLOG’ in Fred. B. Chambers (ed.) Distributed
Computing, Academic Press: 79-110.

J. Chassin de Kergommeaux, Philippe Codognet
(1994) ‘Parallel Logic Programming Systems’,
ACM Computing Surveys, vol. 26, no. 3, September
1994: 295-336.

A. Colmerauer (1982) ‘An interesting subset of
natural language’ in K. L Clark & S-A Tärnlund
(eds.) Logic Programming, Academic Press,
London: 45-66.

A. Colmerauer (1985) ‘PROLOG in 10 figures’,
Communications of the ACM, December, volume
28, number 12: 1296-1310.

A. Colmerauer & P. Roussel (1992) ‘The Birth of
PROLOG’ ACM SIGPLAN Notices, volume 28, no.
3, March 1993 and In Thomas J. Bergin and
Richard G. Gibson, (eds.) (1996) History of
Programming Languages, ACM Press/Addison-
Wesley: 331-367.

J. Cohen (1988) ‘A View of the Origins and
Development of PROLOG’, Communications of the
ACM, vol. 31, no. 1, 26-36.

J. Cohen (2001) ‘A Tribute to Alain Colmerauer’,
TLP 1, no. 6: 637-646.

R. Ennals (1982) Beginning micro-PROLOG, Ellis
Horwood and Heinemann, Chichester and London.

 98

TeamEthno-Online Issue 2, June 2006, 85-100

R. Ennals ([1982], 1984) ‘Teaching logic as a
computer language in school’ in M. Yazdani (ed.)
New Horizons in Educational Computing. Ellis
Horwood.

R. Ennals, J. Briggs & D. Brough (1984) ‘What the
naïve user wants from PROLOG’ in J.A. Campbell
(ed.) Implementations of PROLOG, Ellis Horwood
Limited, Chichester: 376-386.

R. Ennals and J. Briggs (1984) ‘Logic and
Programming’, Steve Torrance (ed.) The Mind and
the machine: philosophical aspects of artificial
intelligence, Ellis Horwood Limited publishers,
Chichester: 133-144.

R. Fogelholm (1984) ‘Exeter PROLOG – some
thoughts on PROLOG design by LISP user’ in J.A.
Campbell (ed.) Implementations of PROLOG, Ellis
Horwood Limited, Chichester: 111-116.

K. Fuchi, R. Kowalski, K. Furukawa, K. Ueda, K.
Kahn, T. Chikayama, E. Tick (1993) ‘Launching
New Era’, Communications of the ACM, vol. 36,
no. 3, March 1993: 49-100.

K. Furukawa (1992) ‘Logic Programming as the
integrator of the firth generation computer systems
project’, Communications of the ACM, March 1992,
vol. 34, no.3: 82-92.

G. Gupta, E. Pontelli, K. A.M. Ali, M. Carlsson, M.
V. Hermenegildo (2001) ‘Parallel execution of
PROLOG programs: a survey’, ACM Transactions
on Programming Languages and Systems, vol. 23,
no. 4: 472-602.

C. Hewitt. Planner: A Language for Proving
Theorems in Robots IJCAI 1969.

C. Hewitt. Procedural Embedding of Knowledge In
Planner IJCAI 1971.

C. Hewitt. ‘The Challenge of Open Systems’, Byte
Magazine, April 1985.

C. Hewitt and G. Agha (1988) ‘Guarded Horn
clause languages: are they deductive and Logical?’
International Conference on Fifth Generation
Computer Systems, Ohmsha 1988. Tokyo. Also in
Artificial Intelligence at MIT, Vol. 2. MIT Press
1991.

E. C. Hughes (1984) The Sociological Eye,
Transaction Books, New Brunswick.

B. Kornfeld and C. Hewitt. ‘The Scientific
Community Metaphor’ IEEE Transactions on
Systems, Man, and Cybernetics. January 1981.

R. Kowalski (1974) ’Predicate Logic as a
Programming Language’, Proceedings IFIP
Congress, 569-574.

R. Kowalski (1979) Logic for Problem Solving,
North Holland, NY.

R. Kowalski (1979) ‘Algorithm = Logic + control’,
Communications of the ACM, volume 22, number
7: 424-436.

R. Kowalski (1982) ‘Logic Programming and the
5th generation’ in State of the art of 5th generation
computing, Infotech, Pergamon.

R. Kowalski (1988) ‘The early years of Logic
Programming’, Communications of the ACM,
January.

H. Roth and McDermott (1978) ‘An interface
matching technique for inducing abstractions,
Communications of ACM, 21.

J. McCarthy. (1958) ‘Programs with common
sense’, Symposium on Mechanization of Thought
Processes, National Physical Laboratory,
Teddington, England.

C. Mellish and S. Hardy (1984) ‘Integrating
PROLOG in the POPLOG environment’ in J.A.
Campbell (ed.) Implementations of PROLOG, Ellis
Horwood Limited, Chichester: 147-162.

T. Moto-oka, (1982) Fifth Generation Computer
Systems: Proceedings of the International
Conference on Fifth Generation Computer Systems,
Tokyo, Japan, North-Holland Publishing Company,
Amsterdam.

T. Pinch (1986) Confronting Nature: the Sociology
of Solar-Neutrino Detection, Reidel Publishing
Company, Dordrecht.

J. A. Robinson (1965) ‘A Machine-Oriented logic
based on the resolution principle’, Journal of the
ACM, vol. 12, no. 1, January 1965: 23-41.

J. A. Robinson (1969) ‘A Note on Mechanizing
Higher Order Logic’, in B. Meltzer, D. Michie
(eds.) Machine Intelligence 5, Edinburgh
University Press, Edinburgh: 123-133.

J. A. Robinson and E. E. Silbert (1982a)’LOGLISP:
An Alternative to PROLOG’, in Hayes, P. J.,
Michie, D., Pao, Y-H. (eds.) (1982) Machine
Intelligence 10: Intelligent Systems – Practice and
Perspective, Ellis Horwood, Chichester.

J. A. Robinson and E. E. Silbert (1982b)
’LOGLISP: Motivation, Design and

 99

TeamEthno-Online Issue 2, June 2006, 85-100

Implementation’ in K. L. Clark & S-A. Tarnlund
(eds.) (1982) Logic Programming, Academic Press,
New York.

P. Roussel (1975) PROLOG: Manuel d’utilisation,
Groupe d’intelligence Artificielle, Université
d’Aix-Marseille, Luminy, France.

E. Shapiro (Ed.) (1987) Concurrent Prolog:
Collected Papers, vol. 1 & 2, MIT Press,
Cambridge, MA.

E. Shapiro (1989) ‘the family of concurrent logical
programming languages’, ACM Computer Survey,
vol. 21, no. 3, September 1989: 413-510.

S. Uchida and K. Fuchi (1992) Proceedings of the
FGCS Project Evaluation Workshop Institute for
New Generation Computer Technology (ICOT).
1992.

J. Slagle. ‘Experiments with a Deductive Question-
Answering Program' CACM. December, 1965.

Takeuchi et al. (1982) New Unified Environment,
Nippon Telegram and Telephone Public
Corporation.

K. Ueda (1986) ‘Guarded Horn Clauses’, ICOT
Technical Report TR-103, Institute for New
Generation Computer Technology (ICOT), Tokyo,
1985.
Revised version in Proc. Logic Programming '85,
Wada, E.(ed.), Lecture Notes in Computer Science
221, Springer-Verlag, Berlin Heidelberg New York
Tokyo, 1986, pp.168-179.
Also in Concurrent Prolog: Collected Papers,
Shapiro, E.Y. (ed.), The MIT Press, Cambridge,
1987, pp.140-156.

T. Winograd (1971) Natural Language Processing,
IJCAI 71, September,

T. Winograd (1972) Understanding Natural
Language. Academic Press, New York.

D. H. D. Warren (1977) Implementing PROLOG,
Research report 39 & 40, Department of AI,
University of Edinburgh.

D. H. D. Warren (1980) ‘An improved PROLOG
Implementation which optimises tail recursion’, in
Tärnlund, S-Å, Proceedings of the Logic
Programming Workshop, Debrecen, Hungary.

 ANNEX:

This is Mellish and Hardy (1984) example of the
unification of elements in POPLOG by combining
PROLOG notation with task recursion notation:

Define member (x, y, continuation)
Vars t;
Deref (x) -> x;
Deref (y) -> y;

(;;;deref gets the value of a PROLOG variable if it has one ;;; if
not, it gets the last ‘ref’ in the chain)

if isref (y) then
conspair (x, consref (‘undef’)) -> cont (y);
continuation ();
‘undef’ -> cont (y)
Elseif ispair (y) then
Deref (front (y)) -> t;
If isref (x) then
t-> cont (x);
continuation ();
‘undef’ ->cont (x)
Elseif isref (t) then
X -> cont (t);
Continuation ();
‘undef’ -> cont (t)
Else
Unify (x, t, continuation)
Endif
Endif
;;; code for second clause of definition enddefine;

 100

