
Application of monadic substitution to recursive type

containment
Vladimir Komendantsky
School of Computer Science

University of St Andrews
St Andrews, KY16 9SX, UK
vk10@st-andrews.ac.uk

Abstract

In this paper, we present a computer-checked, constructive soundness and complete-
ness result for prototypic recursive type containment with respect to containment of non-
wellfounded (finite or infinite) trees. The central role is played by formalisation of substi-
tution of recursive types as a monad, with a traverse function implementing a strategy for
potentially infinite recursive unfolding. In the rigorous setting of constructive type theory,
the very definition of subtyping should be scrutinised to allow a prover to accept it. As a
solution, we adapt the method of weak bisimilarity by mixed induction-coinduction recently
introduced to Coq by Nakata and Uustalu. However, our setting is different in that we work
with a notion of weak similarity that corresponds to subtyping. We accomplish the task
of representing infinitary subtyping in the Calculus of (Co-)Inductive Constructions. Our
technique does not require extensions of the Calculus and therefore can be ported to other
dependently typed languages.

1 Introduction

Paper-and-pen proofs of soundness and completeness of recursive type containment (subtyping)
with respect to models based on tree structures have been known since the early 1990’s result of
Amadio and Cardelli [2]. Over the years, their technique has been gradually refined and slightly
simplified in presentation [3, 5]. Recently there has been a renewed interest in subtyping [4]
which was also stimulated by progress in the area of dependently typed languages such as Agda
or Coq. It becomes possible to capture subtyping in such languages, although traditional proofs
are not necessarily straightforward to implement. Implementations rather take into account
what is practically possible in type theory and what is not. Especially, this concerns notions of
rewriting required for possibly infinite unfolding of recursive types.

Here we show that a prototypic subtype relation that can neither be defined as a least
fixed point nor as a greatest fixed point alone can nevertheless be defined with inductive and
coinductive types and an impredicative universe of propositions. One of the most interesting
points is that the definition proceeds alike a fold in functional programming, although a rather
unusual one, that is not applied to any starting object. This is an illustration of a very general
programming pattern allowing to alternate least and greatest fixed points. The soundness and
completeness result stated in the paper, apart from guaranteeing correctness of our definition
of subtyping, has a technical significance of providing a mechanism of weak head normal forms
that seems indispensable in situations when we need to “evaluate” a subtyping statement.

One possible application for subtyping in a language of µ-types that motivates our work
is coercive containment of regular expressions [6], a paradigm based on understanding regular
expressions as types and concerned with a proof-theoretic interpretation of containment of lan-
guages denoted by regular expressions. This also motivates the choice of monadic presentations
of µ-types. Monadic presentations [1, 8, 7] are usually employed to study type-preserving substi-
tutions. In the case of coercions, regular expressions themselves are modified, but words in the

1

vk10@st-andrews.ac.uk


Recursive type containment Komendantsky

underlying language of the source of the coercion are preserved in the language of the target of
the coercion. So, in fact, we might speak of type-coercing rather than type-preserving substitu-
tions. In this paper though, coercions are not yet spelt out in the object language, and we have
to study how exactly we can extract the coercive content from proofs of subtyping statements.

Throughout the paper, we use a human-oriented type theoretic notation for the meta-
language in which we define recursive types (the object language): ? denotes the universe of
types (which is predicative), ?′ denotes the universe of propositions (which is impredicative),
and inductive and coinductive definitions are displayed in natural-deduction style with single
and, respectively, double lines.

2 Recursive types

Below is the traditional definition of the set of recursive types. It is commonly defined by the
following grammar [3, 2]:

E,F ::= ⊥ | > | X | E_F | µX. E_F

where X is a symbolic variable taken from a set of variables. The least fixed point operator µ
binds free occurrences of the variable X in E_F . This traditional omission of products and
sums that are needed for practical programming is due to the fact that their treatment is very
similar to that of _, see, e.g., [2]. The only true problem, however, is concerned with the µ
operator.

For the purpose of type-theoretic encoding, we choose another, equivalent and yet more
tangible definition of recursive types, where named variables are replaced by nameless de Brujin
variables. We represent recursive types in Coq [10], by induction as follows:

ty : N→ ?

⊥ : ty n > : ty n
i : In

Xi : ty n
E : ty n F : ty n

E_F : ty n

E : ty (1 + n) F : ty (1 + n)

µ E_F : ty n

where the constructors are, respectively, the empty type ⊥, the unit type >, a variable, the
function type constructor → and the least fixed point arrow type constructor µ → . The
dependent type In represents the first n natural numbers, and therefore an object i of type In
is a pair consisting of a natural number m and a proof of m < n. An interesting point is, if
we compare In with the algebraic type of finite number employed by McBride in [8], that the
relation < on natural numbers can be expressed as a boolean relation, which allows to encode
the whole proof of m < n as a boolean value, and is very handy in case analysis.

Recursive types have a correspondence with non-wellfounded (finite or infinite) trees with
the following definition by coinduction:

tree : N→ ?

⊥∞ : tree n >∞ : tree n
i : In

X∞
i : tree n

t : tree n u : tree n

t_∞u : tree n

Intuitively, trees are views of µ-types unfolded ad infinitum. We denote the tree corresponding
to a type E by JEK. The straightforward subtree relation tle n on tree n is denoted by ≤∞ (by
noting that we can infer the implicit argument n):

tle n : tree n→ tree n→ ?′

2



Recursive type containment Komendantsky

⊥∞ ≤∞ t t ≤∞ >∞
i : In

X∞
i ≤∞ X∞

i

u1 ≤∞ t1 t2 ≤∞ u2

(t1_∞t2) ≤∞ (u1_∞u2)

Note that the subtree relation is contravariant in the first argument of _∞ and covariant in the
second. Two recursive types are in the subtype relation when their potentially infinite unfoldings
are in the subtree relation. This is where monadic term presentations come into play. Instead
of trying to define inductive limits of sequences of approximations of unfoldings of recursive
types (as traditionally done in paper-and-pen proofs, e.g., in [2]), we encapsulate unfolding ad
infinitum by relying on expressivity of dependent types of the CIC which allow to define this
powerful monadic presentation structure. The point here, similar to a remark made by Amadio
and Cardelli in [2], is that unfoldings of recursive types are regular trees, which we treat using
a mix of induction and coinduction.

3 Monadic substitution

We implemented in Coq a generic notion of symbolic substitution introduced in [1] for untyped
lambda terms. It is based on the notion of universe of types, that is, a function space A → ?
where A can be any given type and ? is the polymorphic type of all types. A is said to index
the type ?. For effective indexing, the index type should be countable, and for that, it suffices
to consider the type N of natural numbers. Following McBride [8], we call the resulting type of
universe stuff :

stuff : ? stuff = N→ ?

For a given n, the intended meaning of stuff n is stuff with n variables.
In the foundation of the method, there is a type of monadic structure called kit [8, 7]:

kit : stuff → stuff → ?

var : ∀ n. In → U n lift : ∀ n. U n→ T n wk : ∀ n. U n→ U (1 + n)

Kit var lift wk : kit U T

A substitution of type sub T m n is such that it applies to stuff with at most m variables
and yields stuff with at most n variables. Hence a substitution is essentially an m-tuple of T n,
that is,

sub : stuff → N→ N→ ? sub T m n = m-tuple (T n)

In order to establish compositionality on substitutions, we define applicative structure on
substitutions which is called subApp:

subApp : stuff → ?

var : ∀ n. In → T n app : ∀ U m n. kit U T → T m→ sub U m n→ T n

SubApp var app : subApp T

A straightforward substitution strategy is implemented by the function trav below that tra-
verses a term E and applies a given substitution s. Note that, since s is a tuple, si is a consistent
notation for the i-th element of s.

trav : ∀ T m n. kit T ty→ ty m→ sub T m n→ ty n

trav K ⊥ s = ⊥
trav K > s = >
trav K Xi s = let Kit li = K in li si

trav K (F_G) s = (trav K F s)_(trav K G s)

trav K (µ F_G) s = µ (trav K F (lift sub K s))_(trav K G (lift sub K s))

3



Recursive type containment Komendantsky

Here, lift sub is a function that lifts a substitution to the next order, that is, it shifts indices of
the active variables in the substitution by +1. This function has type

∀ (T U : stuff) (K : kit T U) m n. sub T m n→ sub T (1 +m) (1 + n)

What is the concrete structure of substitution on ty and why kit is indeed a monad will be
explained in an extended version of this paper. A definition from the concrete structure of
substitution, the function unfld that unfolds a µ-redex, is used in the next section.

4 Weak similarity by mixed induction-coinduction

We define the weak similarity relation tyle n ⊆ ty n×ty n by folding the inductive part of
the definition into the coinductive one. Our technique is an illustration of a generic method
for folding one relation in another. We use the impredicative universe of propositions that we
denote by ?′, which is needed for the proof of soundness and completeness. First, we define
the inductive part tylei n R of the subtyping relation (denoting tylei n R E F by E ≤R F ,
suppressing the implicit argument n):

tylei : ∀ n. (ty n→ ty n→ ?′)→ ty n→ ty n→ ?′

⊥ ≤R E E ≤R >
R E F R G H
F_G ≤R E_H µ E_F ≤R unfld E F

unfld E F ≤R µ E_F E ≤R E
E ≤R F F ≤R G

E ≤R G

Having the rules for reflexivity and transitivity in the inductive part of the subtype relation is
essential for this construction. Indeed, by having these rules explicitly, we are able to compare
elements of pairs in the domain of the subtype relation in a finite number of steps possibly
infinitely. Leaving transitivity out of the definition would collapse finite and infinite transitivity
chains to infinite ones only, and the soundness argument would not work.

Next, we fold the inductive relation ≤R in a coinductive relation tyle n and produce a weak
similarity (denoting tyle n E F by E ≤ F ):

tyle n : ty n→ ty n→ ?′

∀ E F. R E F → E ≤ F E ≤R F

E ≤ F

The only introduction rule for ≤ has two hypotheses, namely, that R is a subrelation of ≤, and
that F is ≤R-accessible from E in finitely many steps (since ≤R is an inductive relation).

5 Soundness and completeness

Main Theorem (Soundness and completeness).

∀ (n : N) (E F : ty n). E ≤ F ↔ JEK ≤∞ JF K

The “only if” direction (completeness) follows by a straightforward application of the coin-
duction principle. For the “if” direction (soundness), we define the weak head normal form
(WHNF) of the relation ≤∞ and solve the problem via WHNFs, which is a common workaround
helping with ensuring syntactic guardedness of the proof [4, 9].

4



Recursive type containment Komendantsky

6 Conclusions

We showed how monadic substitution can be used to define a rather simple case of subtyping
relation: µ-types without products or sums. Our study is closely related to the work of Altenkirch
and Danielsson [4] who define subtyping using a suspension computation monad inspired by
semantics of programming languages. The method with the suspension monad turns out not to
be immediately applicable outside the special setting of [4] because of the way the termination
checker works in Coq at the moment. Namely, there is no united checker for recursive and
corecursive functions. Instead, there appear to be two independent mechanisms, one for checking
structurality of recursive functions, and another for checking guardedness of corecursive ones.
This leads to difficulties with mixed induction-coinduction. In fact, it would have been very
beneficial for the termination checker of Coq if the suspension monad was implemented in it
since that would require unifying the two parts together at last.

Here, we resolve these difficulties on top of the prover, following a very general method that
allows to encode infinitary subtyping by folding the inductive relation ≤R into the coinductive
≤. Also, we remark that the presented approach of weak similarity is a natural solution to
problems arising from declaring closure properties such as transitivity in coinductive relations
that were discussed in [5]. Indeed, with our definitions, infinite transitivity chains do not arise.

Acknowledgements. I would like to thank Keiko Nakata and Niels Anders Danielsson for
their help and advice regarding theorem proving and provers. The research is supported by the
research fellowship EU FP7 Marie Curie IEF 253162 ‘SImPL’.

References

[1] T. Altenkirch and B. Reus. Monadic presentations of lambda-terms using generalized inductive types.
In Computer Science Logic ’99, LNCS 1683, pages 453–468. Springer, 1999.

[2] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Transactions on Programming
Languages and Systems, 15(4):575–631, 1993.

[3] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type equality and subtyping. In
R. Hindley, editor, Proc. 3rd Int. Conf. on Typed Lambda Calculi and Applications (TLCA), volume
1210 of LNCS, pages 63–81, Nancy, France, 1997. Springer-Verlag.

[4] N. A. Danielsson and T. Altenkirch. Subtyping, declaratively. In C. Bolduc, J. Desharnais, and
B. Ktari, editors, Mathematics of Program Construction, volume 6120 of Lecture Notes in Computer
Science, pages 100–118. Springer Berlin / Heidelberg, 2010. doi:10.1007/978-3-642-13321-3 8.

[5] V. Gapeyev, M. Y. Levin, and B. Pierce. Recursive subtyping revealed. J. Fun. Prog., 12(6):511–548,
2002.

[6] F. Henglein and L. Nielsen. Regular Expression Containment: Coinductive Axiomatization and
Computational Interpretation. In Proc. 38th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL), January, 2011.

[7] C. Keller and T. Altenkirch. Hereditary substitutions for simple types, formalized. In Proceedings
of the third ACM SIGPLAN workshop on Mathematically structured functional programming, MSFP
’10, pages 3–10. ACM, 2010.

[8] C. McBride. Type-preserving renaming and substitution, 2005. Manuscript.

[9] K. Nakata and T. Uustalu. Resumptions, weak bisimilarity and big-step semantics for While with in-
teractive I/O: An exercise in mixed induction-coinduction. In Proc. Structural Operational Semantics
(SOS) 2010, 2010.

[10] The Coq development team. The Coq proof assistant reference manual. http://coq.inria.fr/

refman/.

5

http://coq.inria.fr/refman/
http://coq.inria.fr/refman/

	Introduction
	Recursive types
	Monadic substitution
	Weak similarity by mixed induction-coinduction
	Soundness and completeness
	Conclusions

