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Abstract. In this paper we show that a prototypical subtype relation
that can neither be defined as a least fixed point nor as a greatest fixed
point can nevertheless be defined in a dependently typed language with
inductive and coinductive types. The definition proceeds alike a fold
in functional programming, although a rather unusual one: that is not
applied to any starting object. There has been a related construction of
bisimilarity in Coq by Nakata and Uustalu recently, however, our case
is not concerned with bisimilarity but a weaker notion of similarity that
corresponds to recursive subtyping and has it’s own interesting problems.

1 Introduction

It is common in practice to have datatypes formed by nested least and greatest
fixed points. For example, consider a grammar and parse trees of derivations in
that grammar that are allowed to be infinite only below certain non-terminal
nodes. Or, a semantic model of a programming language where we distinguish
between termination and diverging computation. With dependent types, it is
possible to define types such as of grammars or parse trees. However, it is not
straightforward to define nested fixed points using implementations of inductive
and coinductive type definitions. This is mainly because these type definitions
are subject to strong syntactic checks in current implementations of dependently
typed languages. A strong restriction is made by type-checkers that require coin-
ductive type definitions to satisfy syntactic soundness constraints simple enough
to be machine-checkable. A common form of such syntactic constraints is known
simply as guards. It is often a programming challenge to avoid guardedness issues
and yet define a meaningful coinductive type. There are at least two different
methods to encode nested fixed points in type-theoretic proof assistants that are
both known as mixed induction-coinduction, the first is defined in [8] and the
second, in [18]. The former uses a programming construct of suspension com-
putation monad, while the latter seems to rely on a variant of fold function.
Suspension monad is efficient and intuitive, however, it has to be supported
by the programming language rather than simply implemented on top of it, for
which many dependently typed provers would require substantial re-engineering.
Not having a sufficient resource for rewriting the implementation of a prover,



we choose the second, probably not so efficient but maybe a bit more portable
method and apply the fold pattern on top of the language.

The language in question is Coq [19]. It has dependent products of the form
∀ (x : A). B where x is a variable which is bound in B; the case when x is not
free in B is denoted A → B and is a simple, non-dependent type. Also, Coq
features inductive and coinductive type definitions. For the sake of presentation,
we do not provide listings of Coq code, which would be plain ASCII. Instead,
throughout the paper, we use a human-oriented type-theoretic notation, where
Type denotes the universe of types (which is predicative), and inductive and
coinductive definitions are displayed in natural-deduction style with single and,
respectively, double lines.

Contribution. We develop a method for inductive-coinductive encoding for a
class of similarity relations exemplified in the paper by recursive subtyping of
µ-types. A mechanised version of our proofs formalised in Coq is also presented
without going through too many technical details. The method allows to in-
ternalise, in type theory, similarity relations that can neither be defined as an
inductive relation nor as a coinductive relation alone but as a relation formed
by nesting an inductive relation inside a coinductive relation or vice versa.

The motivation for this work is a better understanding of termination issues
in subtyping as an exercise in the higher-order programming style with iteration
and coiteration schemes [1] with a possibility of extensions to formalisms such
as extended regular expressions (with variables that approximate behaviour of
backreferences), and paving the way for further extensions and provably correct
practical applications. The generic approach to terms with variables allows to
completely redefine the structure of substitution for extended cases and yet keep
the same fundamental approach to subtyping (or, more generally, similarity).

Outline. In Sec. 2 we explain the subtyping relation construction method. In
Sec. 3 we define the object language of recursive types formally, using Coq as
the meta-language. In Sec. 4 we define subtyping in the meta-language. Sec. 5
contains the statement and a proof of soundness and completeness of our defi-
nition of recursive subtyping with respect to containment of finite and infinite
trees. The powerful method of monadic substitution is described in Sec. 6. In
fact, this technical section contains precise function definitions used in the earlier
sections 3 and 4. Related work on subtyping for recursive types and methods for
decision procedures is summarised in Sec. 7 where the alter ego mixed induction-
coinduction method is described as well. Finally, in Sec. 8 we give concluding
remarks. The interested reader can also refer to the accompanying Coq script
with definitions and proofs constructed for this paper at the author’s web page
by the URL http://www.cs.st-andrews.ac.uk/˜vk/doc/subfold.v. The script re-
quires Coq with the Ssreflect [10] extension that are available as packages in
common operating systems. The Ssreflect extension does not change the type-
theoretic foundation of Coq but rather provides enhancements for the tactic
language and handy type definitions and lemmas for bounded numbers and tu-



ples used in our formalisation. Therefore a proof without Ssreflect is also possible
by routine redefinition of notions already available.

Notational conventions. In the paper, we use a natural-deduction style notation
for inductive and coinductive definitions. For example, the inductive definition
of the type Σ of dependent sum is written in two steps. First, we define the
universe, of which our type is inhabitant (to the right of the semicolon):

Σ : ∀ (A : Type). (A→ Type)→ Type

and second, we define the constructors of the type by providing a natural deduc-
tion rule for each constructor. In the case of Σ, there is only one constructor,
and so, only one rule:

x : A
p : P x

exist x p : Σ A P

with exist being the name of the constructor. The structure of a rule is a finite
tree whose root contains the conclusion of the rule. Let us define the level of the
root of a rule to be 0. If the level of a given node in a tree is n then the level of
the roots of its immediate subtrees is n+ 1. The constructor exist requires three
levels, from 0 to 2, because the variable p defined at level 1 depends on another
variable x which should be defined first, at level 2. It is standard [19] to define
first the notion a dependent type (any type ∀ (x : A). B where x is free in B),
and then the notion of an inductive type. The latter can be quite involving. As a
light-weight alternative, we can define and visualise a dependent inductive type
starting from our presentation of inductive types in terms of rules as follows:

A dependent inductive type is an inductive type with at least one of its
constructors defined by a natural deduction rule containing more than 2
levels.

An inductive type corresponds to the least fixed point of the inference op-
erator generated by the set of rules of the type definition. On the other hand,
a coinductive type is supposed to approximate the greatest fixed point of the
inference operator. At present, the type theory of Coq does not have mixed
inductive-coinductive type definitions. Types can be defined either inductively
or coinductively, and never both at the same time. This makes it easier to write
rules because we do not have a choice of rule notation once it is fixed that a type
is inductive or coinductive.

In the case of the definition of the non-dependent inductive relation tylei in
Sec. 4, constructor names are omitted for brevity especially because they do not
carry information other than that involved in theorem proving only, and we do
not refer to these names the paper.

We make an exclusion from the general level pattern by writing lines above
roots of 0-level rules, for example,

0 : N



to indicate whether these rules are inductive or coinductive, because any 0-level
rule, even though it defines a value, is typechecked differently by Coq depending
on whether it appears in an inductive or coinductive definition.

2 The fold pattern

Here is the polymorphic type of the familiar list-based left fold function:

foldl : ∀ (S T : Type) (f : T → S → T ) (a : T ) (l : list S). T

(On a fundamental approach to fold, the reader is advised to refer to [4].) The
result of iterative computation of an appropriately typed function f on values
from the list l starting from a given value a is aggregated on the left.

Let us now drop the requirement that the fold starts from some object. This
removes the first argument of the function f altogether. The fold function that
we are going to construct has two dependent arguments: a function f and a
collection l (which is not quite a list) of objects of S. This description fits the
definition of the following operator ≤intro generating a coinductive relation ≤:

f : (∀ E F. R E F → E ≤ F ) l : E ≤R F

≤intro R E F f l : E ≤ F

We can see that the arguments R, E and F can be inferred from the types of f
and l. The constructor ≤intro has two dependent arguments, f and l, and yields
an object (in fact, a proof) inhabiting a particular case of relation. The function
f can indeed be seen as a mapping of a proof that from an object E we can
access another object F by the relation R to a corresponding proof that from
E we can also reach F by ≤. In other words, f is an inclusion of R into ≤.
The interpretation of the argument l is a bit more involved. Think of ≤R as a
finite relation encapsulating another, infinite one in such a way that an infinite
number of steps is possible only finitely. The latter sounds rather speculative,
however, the intuition is that E ≤R F is alike a type of finite list of certain
abstract, possibly infinite objects. Moreover, proofs of E ≤R F can be perceived
as paths from E to F . So, the function ≤intro R E F f collapses the finite
list l of possibly infinite paths to a certain infinite coinductively defined object.
Thanks to the premises of ≤intro we are able to compare elements of pairs in the
domain of ≤ in a finite number of steps possibly infinitely.

It is worth noting that having a coinductive type definition such as that of
≤ is nothing close to requiring an infinite amount of memory for objects of that
type. The shape of such an object is a regular tree which may have an infinite
unfolding but in itself is a finitely presented entity.

3 Recursive types

Below in this section we give a proper inductive definition of recursive types,
our object language, in Coq as the the meta-language. However, first recall a



traditional definition of the set of recursive types that uses a grammar [5, 3]:

E,F ::= ⊥ | > | X | E_F | µX. E_F

where X is a symbolic variable taken from a set of variables. The least fixed point
operator µ binds free occurrences of the variable X in E_F . This definition has
neither products nor sums that are needed for practical programming. However,
we do not consider product or sum types in this schematic implementation be-
cause their treatment follows a similar pattern compared to _, see, e.g., [3].
Moreover, we choose to replace named variables in the definition by nameless de
Brujin variables, which yields an equivalent and yet more tangible construction.

A nameless variable is essentially a number m with an upper bound n where
m represents the depth of the variable under binders in a term with at most
n free variables. We will now define an appropriate notion of bounded number.
First, take the usual inductive definition of the type of (unary) natural number:

N : Type

0 : N
n : N

S n : N
Further on in the paper, 1 + n is assumed to be convertible to S n. Natural
numbers enjoy a decidable less-than relation. It can be defined via the usual
truncated subtraction and decidable equality, that is, a relation with values true
or false of type bool. Let us recall the equality relation on natural numbers as
follows:

== : N→ N→ bool

0 == 0 = true

S m == S n = m == n

0 == S n = false

S m == 0 = false

The less-then relation is then a function

m < n = S m− n == 0

The type of bounded number can be defined now:

I : N→ Type

m : N
p : m < n

num n m p : In
So, we have a dependent inductive type here, with the type of the variable p
depending on the value m. The type In is a special dependent pair type, sim-
pler than Σ from the Introduction, specified on the concrete boolean predicate
λ m. m < n. The proof of m < n is encoded as a boolean value. This has two
outcomes. From one side, since it is easier to reason by cases on boolean-valued



relations than on more general relations with values in Type, this definition of
bounded number greatly facilitates proof by cases. On the other hand, compared
to the algebraic type of finite number employed, for example, in the construction
of [8], the type In is a subtype of N by the coercion

N of num (n : N) (i : In) = let num m = i

in m

This permits application of lemmas for N to statements about In without recur-
sive conversion of finite numbers to natural numbers. The question of automation
of insertion of the coercion N of nat is inessential for the constructions in the
paper.

Now we can give our working definition of recursive types by induction as
follows:

ty : N→ Type

⊥ : ty n > : ty n
i : In

Xi : ty n

E : ty n F : ty n

E_F : ty n
E : ty (1 + n) F : ty (1 + n)

µ E_F : ty n

where the constructors are, respectively, the empty type ⊥, the unit type >, the
variable constructor X (indeed, we later use it without an index), the function
type constructor _ and the least fixed point arrow type constructor µ _ .

Recursive types have a correspondence with non-wellfounded (finite or infi-
nite) trees with the following definition by coinduction:

tree : N→ Type

⊥∞ : tree n >∞ : tree n
i : In

X∞
i : tree n

t : tree n t : tree n

t_∞u : tree n

Intuitively, trees are views of µ-types unfolded ad infinitum. We denote the tree
corresponding to a type E by JEK. It is interesting to see now what is the exact
connection of types with trees. We give a definition that uses a piece of notation
from later on in this paper. We define J K corecursively using the function sbst (see
the definition in Sec. 6) of capture avoiding substitution of the second argument
for all occurrences of variable 0 in the first argument as follows:

J⊥K = ⊥∞

J>K = >∞

JXiK = X∞
i

JE_F K = JEK _∞ JF K
Jµ E_F K = Jsbst E (µ E_F )K _∞ Jsbst F (µ E_F )K

The straightforward subtree relation tle n on tree n is denoted by ≤∞ (omitting
the implicit argument n):

tle n : tree n→ tree n→ Type



⊥∞ ≤∞ t t ≤∞ >∞
i : In

X∞
i ≤∞ X∞

i

u1 ≤∞ t1 t2 ≤∞ u2

(t1_∞t2) ≤∞ (u1_∞u2)

Thus, two recursive types are in the subtype relation when their potentially infi-
nite unfoldings are in the subtree relation. Traditionally, subtyping theorems are
stated in terms of inductive limits of sequences of approximations of unfoldings
of recursive types (e.g., in [3]). Instead of using explicit induction in that way,
we rather rely on dependent types of the CIC which allow to define a powerful
monadic structure encapsulating unfolding ad infinitum. The point here, simi-
lar to an observation made by Amadio and Cardelli in [3], is that unfoldings of
recursive types are regular trees, which we treat using a mix of induction and
coinduction.

4 Definition of recursive subtyping

We define the weak similarity relation tyle n ⊆ ty n×ty n by folding the inductive
part of the definition into the coinductive one. Our technique is an illustration
of a generic method for folding one relation into another. For the purpose of
having notational correspondence to the Coq proofs, we decide to keep both the
Coq name for a relation and introduce a mnemonic denotation for it at the same
time for readability. In what follows, ≤R denotes tylei n R, and ≤ denotes tyle n
for an implicit parameter n.

First, we define the inductive part tylei n R of the subtyping relation (denot-
ing tylei n R E F by E ≤R F , suppressing the implicit argument n):

tylei : ∀ n. (ty n→ ty n→ Type)→ ty n→ ty n→ Type

⊥ ≤R E E ≤R >
R E F R G H
F_G ≤R E_H µ E_F ≤R unfld E F

unfld E F ≤R µ E_F E ≤R E
E ≤R F F ≤R G

E ≤R G

where unfld is the operation that unfolds a µ-redex by substituting the term
µ E_F for the variable 0 in the term E_F . This operation is defined in Sec. 6.
Having the rules for reflexivity and transitivity in the inductive part of the
subtype relation is essential for this construction. Indeed, by having these rules
explicitly, we are able to compare elements of pairs in the domain of the subtype
relation in a finite number of steps possibly infinitely. Leaving transitivity out
of the definition would collapse finite and infinite transitivity chains to infinite
ones only.

Next step is to fold the inductive relation and produce a weak similarity. This
is done by the single-constructor coinductive type:

tyle n : ty n→ ty n→ Type

We denote tyle n E F by E ≤ F . In the rule below, we keep arguments n,R,E, F
of the constructor despite that we can infer these from the types of other pa-
rameters because, in the proofs, we have to make partial applications of the
constructor to arguments:



r : reflexive R t : transitive R f : ∀ E F. R E F → E ≤ F l : E ≤R F

≤intro n R r t E F f l : E ≤ F
The only introduction rule for ≤ has four hypotheses, namely, that R is reflexive,
transitive and a subrelation of ≤, and that F is ≤R-accessible from E in finitely
many steps (since ≤R is an inductive relation).

5 Soundness and completeness

Below we give a proof outline for the Main Theorem. For particular details, the
reader can refer to the accompanying script.

Main Theorem (Soundness and completeness).

∀ (n : N) (E F : ty n). E ≤ F ↔ JEK ≤∞ JF K

Proof. “Only if” (completeness). Suppose that the following coinductive hypoth-
esis H holds:

∀ (n : N) (E F : ty n). JEK ≤∞ JF K→ E ≤ F

Let us first define the following coinduction principle P :

≤intro n Q Qrefl Qtrans

where Q is the relation λ E F : ty n. JEK ≤∞ JF K (note that we abstract
over types here, not trees), and Qrefl and Qtrans are respectively a reflexivity
lemma and a transitivity lemma (each proved by straightforward coinduction).
The coinduction principle P allows us to prove statements of the kind

∀ E F : ty n.
(
∀ E F : ty n. JEK ≤∞ JF K→ E ≤ F

)
→ E ≤Q F → E ≤ F

We reason by simple case analysis on JEK. The case ⊥∞ is proved by an appli-
cation of P to E, F , H and the constructor for ⊥. Most other cases are proved
by case analysis on F and either a similar argument involving the coinductive
principle P applied to a single constructor or proof by contradiction. The three
remaining cases are

1. JE1_E2K ≤∞ Jµ F1_F2K→ (E1_E2) ≤ (µ F1_F2)
2. Jµ E1_E2K ≤∞ JF1_F2K→ (µ E1_E2) ≤ (F1_F2)
3. Jµ E1_E2K ≤∞ Jµ F1_F2K→ (µ E1_E2) ≤ (µ F1_F2)

These are proved by the application of the coinduction principle to E, F , H and
the transitivity constructor of ≤Q with the explicitly unfolded µ-term.

“If” (soundness). We start by admitting the coinductive hypothesis H:

∀ (n : N) (E F : ty n). E ≤ F → JEK ≤∞ JF K

We eliminate the assumption E ≤ F by inverse application of the rule ≤intro.
Thus we obtain a relation R on trees and 4 respective premises. By inductive
elimination of the premiss E ≤R F we arrive at the following 4 cases:



1. E = ⊥;

2. F = >;

3. there exist E1, E2, F1 and F2 such that E = E1_E2, F = F1_F2, R F1 E1

and R E2 F2;

4. there exists E1 such that E1 = E = F .

This is proved by application of the rules of ≤R and the premises of ≤intro

saying that R is reflexive and transitive. (Thus we solve the guardedness issue
that would have arisen should we attempt to use reflexivity and transitivity of
the coinductive relation ≤∞ instead of these two premises.) Hence we have four
possibilities when E ≤∞ F can hold. The first two cases are proved by the ⊥ and
> constructors of ≤∞. The third case is proved by applying the _ constructor,
the hypothesis H, and the premiss saying that R is a subrelation of ≤. The last
case is proved by reflexivity of ≤∞ (whose proof coinsides with the proof of Qrefl

from the completeness part). ut

6 Monadic substitution

Definitions in this technical section have implicit arguments being systematically
omitted for conciseness. We implemented in Coq a generic notion of symbolic
substitution introduced in [2] for untyped lambda terms. It is based on the notion
of universe of types, that is, a function space A → Type where A can be any
given type. The type A is said to index the type Type. For effective indexing,
the index type should be countable, and for that, it suffices to consider the type
N of natural numbers. The terminology and basic notation are similar to those
of McBride [15], although we do not use the notion of a context of types of in
the definition of the universe, which makes it more generic. We call the resulting
universe stuff (referring to its abstract character):

stuff : Type

stuff = N→ Type

For a given n, the intended meaning of stuff n is stuff with n variables. The
intention is to have a general category of objects such as formulas with n free
variables. Yet objects of this category are not endowed with structure making it
applicable to an as wide variety of situations as possible.

In the foundation of the method is a type of monadic structure called kit.
Here we modify the version of [15] by removing the notion of a context of types:

kit : stuff → stuff → Type

var : ∀ n. In → U n lift : ∀ n. U n→ T n wk : ∀ n. U n→ U (1 + n)

Kit var lift wk : kit U T



A substitution of type sub T m n is such that it applies to stuff with at most
m variables and yields stuff with at most n variables. Hence a substitution is
essentially an m-tuple of T n, that is,

sub : stuff → N→ N→ Type

sub T m n = m-tuple (T n)

Here are basic functions on substitutions, with their types. We need a function
to lift a substitution to the next order. This is implemented in the function lift sub
of type

∀ (T U : stuff) (K : kit T U) m n. sub T m n→ sub T (1 +m) (1 + n)

whose definition is by case analysis on K.
Next function to consider is the identity substitution id sub:

id sub : ∀ (T U : stuff) (K : kit T U) n. sub T n n

It is defined by induction on n, applying lift sub on the inductive step.
We define a substitution function sub0 that applies to stuff T with 1 + n

variables, substitutes a given term E for the variable 0, and returns stuff T with
n free variables:

sub0 : ∀ (T U : stuff) (K : kit T U) n (E : T n). sub T (1 + n) n

and the definition is simply by consing E with id sub K n.
The weakening function

wkn sub : ∀ m n T U (K : kit T U). sub T n (m+ n)

is defined by induction on m, applying id sub on the inductive basis, and tuple
mapping on the inductive step.

Substitutions can be easily endowed with structure of composition because
they take stuff and return stuff. In order to establish compositionality on substi-
tutions, we define applicative structure on substitutions which is called subApp:

subApp : stuff → Type

var : ∀ n. In → T n app : ∀ U m n. kit U T → T m→ sub U m n→ T n

SubApp var app : subApp T

Our next goal is to define a concrete kit on stuff T given an applicative structure
of substitutions on T . This is done in stuffKit below. We need three components
of a kit: variables, lifting and weakening. For variables, we can simply reuse those
of the applicative structure. Lifting is simply the identity here. Only weakening
requires further definitions for substitution of variables.

Define a kit for variables as follows:

varKit : ∀ (T : stuff). (∀ n. In → T n)→ kit I T



varKit vr = Kit (λ n. id In) vr (rshift 1)

where rshift 1 is the operation of increment of the upper bound by 1.
Substitution of variables is defined below:

varSub : ∀ m n (T : stuff). subApp T → T m→ sub I m n→ T n

varSub a = let SubApp vr ap = a in ap I m n (varKit vr)

The required kit on stuff T has the following type:

stuffKit : ∀ (T : stuff). subApp T → kit T T

Its variables and lifting are as defined above. Weakening is derived from substi-
tution of variables.

stuffKit a = let SubApp vr = a in

Kit vr (λ . id)
(
λ n E. (varSub a) E (wkn sub 1 n (varKit vr))

)
Finally, for the generic applicative structure, the canonical weakening func-

tion wkstuff from stuff with n variables to stuff with 1 + n variables is defined
as follows:

wkstuff : ∀ T (K : kit T T ) (a : subAppT) n. sub T n (1 +n)→ T n→ T (1 +n)

wkstuff K a s = let SubApp ap = a in

λ E. (ap T n (1 + n) K) E s

A straightforward substitution strategy is implemented by the function trav
below that traverses a term E and applies a given substitution s. Note that,
since s is a tuple, si is a consistent notation for the i-th element of s.

trav : ∀ T m n. kit T ty→ ty m→ sub T m n→ ty n

trav K ⊥ s = ⊥
trav K > s = >
trav K Xi s = let Kit li = K in li si

trav K (F_G) s = (trav K F s)_(trav K G s)

trav K (µ F_G) s = µ (trav K F (lift sub K s))_(trav K G (lift sub K s))

The traverse function allows to define an instance of the applicative structure
on ty that we call tyApp, in Figure 1. In the definition of tyApp, we denoted the
constructor of nameless variables by X. This is a consistent notation since we
defined, in Sec. 3, that Xi is of type ty n for a given natural number n and a
bounded number i of type In. So, X is a function of type ∀ n. In → ty n. The
monadic structure on ty can now be defined as a stuff kit specified on type ty. The
function subty0 substitutes a given µ-type E for the 0-th variable. It is defined
using the generic substitution sub0 we defined above. Weakening is specialised
on ty by the function wkty. The function sbst is capture-avoiding substitution of



tyApp : subApp ty

tyApp = SubApp X trav

tyKit : kit ty ty

tyKit = stuffKit tyApp

subty0 : ∀ n (E : ty n). sub ty (1 + n) n

subty0 = sub0 tyKit

wkty : ∀ n. sub ty n (1 + n) → ty n→ ty (1 + n)

wkty = wkstuff tyKit tyApp

subKit : kit ty ty

subKit = Kit X (λ n. id (ty n)) (λ n. wkty (wk sub n tyKit))

sbst : ∀ n. ty (1 + n) → ty n→ ty n

sbst E F = trav subKit E (subty0 F )

unfld : ∀ n. ty (1 + n) → ty (1 + n) → ty n

unfld E F = sbst (E_F ) (µ E_F )

Fig. 1. The structure of substitution on ty.

a given term F for all occurrences of the 0-th variable of a term E. At last, unfld
unfolds a µ-redex.

Unlike monadic presentations, named presentations of terms with holes can
be cumbersome and have limited application. Among the closest nameless but
not monadic presentations are Capretta’s polynomial expressions with metavari-
ables [6]. They require proving equality of substitutions in a context. Monadic
presentations of terms allow to have substitutions as part of the construction
and also allow for free to have a notion of a term with a hole. For example, it
can be seen that Capretta’s tree expressions with metavariables have the same
expressive power as monadic substitutions on polynomial trees.

7 Related work

In their seminal paper [3], Amadio and Cardelli extended the partial order on
finite types to possibly infinite recursive types and showed that it is sound and
complete with respect to a certain partial order on finite and infinite trees. The
partial order on trees was defined by an infinite sequence of finite approximations
created by truncating trees at a finite depth. Two trees were defined to be in
subtree relation if and only if the partial order holds between their finite approx-
imations at all finite depths. The time complexity of this subtyping algorithm is
exponential.

The authors of [3] stated that a relation of recursive subtyping to decidable
problems on automata was not known. More exactly, the word used was “well-
known”, which may create some space for speculation. However, shortly after,
such connection was found. An efficient, O(n2)-time subtyping algorithm for



recursive types was defined in [14] using regular term semantics. The algorithm
works by reduction of a subtyping problem to the emptiness problem of a special
automaton called term automaton. It was shown there that the automaton-
theoretic approach can be productively applied to subtyping.

It was spelt out by the authors of [5] that the interpretation of subtyping and
equality in terms of, respectively, simulation and bisimulation leads to an infer-
ence system with coinductively motivated fixpoint rules for the term language
of coercions between µ-types. This coinductive view also has a straightforward
application to regular languages [11, 13] given that containment (in other words,
subtyping) and equivalence there correspond to simulation and bisimulation on
finite automata.

From the point of view of higher-order programming, nested type definitions
can be seen as instances of iteration or coiteration schemes. This view was de-
veloped in [1]. The definition of tyle is related to type definitions by Mendler
coiteration for higher ranks, a relationship that can be investigated further in
future work. In this paper, the connection is not made explicit as it would even-
tually require an implementation of generalised iteration and coiteration schemes
in the proof assistant. In comparison, the aim of our work is to use a minimalist
and standard set of tools allowing to state the soundness and completeness result
without going through a more general theory.

The soundness and completeness result allows us to tell that our definition
of syntactic subtyping is correct with respect to the tree semantics. In a proof
assistant this is only a change in representation. Since proof search is undecidable
on the universe of types in general, it is impractical, and likely impossible, to use
either of the representations for efficient proof search in a prover. Instead, we
can use the approach which is known as the two-level approach [6] or small-scale
reflection [10].

We can implement a decision procedure for a class of propositional goals
G ∈ Prop by

1. first defining a type of codes goal : Type and an interpretation function
J K : goal→ Prop surjective on G,

2. and then defining a decision algorithm dec : goal→ bool which can be proved
sound and complete with respect to the propositional interpretation, that is,

∀g : goal. dec g = true↔ JgK

As a result, to prove P ∈ G, it is sufficient to compute dec g, where g is the code
for P .

Alternatively, soundness and completeness of the decision algorithms is an
object of inductive type decidable : Prop→ bool→ Type defined by

p : P

dT p : decidable P true

p : ¬P
dF p : decidable P false

Thus decidable P b denotes the fact that provability of P is decidable by the
algorithm b. As a side note, the above inductive type can be extended to account



for many-valued decision algorithms, for example, three-valued ones, where one
of the values stands for the undefined result.

Common decision procedures may be based on various notions of derivative.
For example, decision procedures for regular expression containment may be
based on deterministic [11] or non-deterministic derivatives [13]. Both kinds of
derivative can be implemented in the type theory of Coq [17, 12].

Alternative approach to subtyping: suspension monad. A practical approach to
nested induction-coinduction is presented in Agda [7]. The authors provide, at
the language level, a type function ∞ : Type → Type which marks a given type
as being coinductive. This type function has an interpretation as a suspension
type constructor that can be used in functional languages with eager evaluation
to model laziness. This interpretation is faithful since ∞ is supplied with delay
and force operators ] : ∀ A. A→∞A and [ : ∀ A. ∞A→ A respectively.

One of the immediate advantages of having the suspension monad supported
by the language is efficiency. This has also a positive effect on succinctness of
function definitions by recursion-corecursion since the implementation includes
an improved termination checker capable of inferring termination guarantees
for such function definitions. This leaves behind the more syntactically oriented
termination checker of Coq.

On the other hand, without support of suspension monad in Coq, we cannot
follow this approach there. This is why it is very interesting to find ways to use
type theory effectively without re-engineering the implementation. Also, note
that currently the suspension monad does not allow to express directly type
definitions which have an outer least fixed point and an inner greatest fixed
point because of the way the termination checker of Agda works.

8 Conclusions

We showed how a rather simple fold encoding pattern can be used to define a
prototypical subtyping relation: µ-types without products or sums. Our study is
closely related to the work of Altenkirch and Danielsson [8] who define subtyping
using a suspension computation monad inspired by semantics of programming
languages. The method with the suspension monad requires support in the way
of dedicated programming language primitives. However, it is not always prac-
tically possible for the user of a prover or dependently typed language to amend
the implementation. Here, we follow a method that allows to encode infinitary
subtyping by folding an inductive relation into a coinductive one, which can
be done using standard type-theoretic means. As with the suspension monad
method, proving soundness corresponds to the most technically advanced part
of work. The soundness argument requires to make the introduction rule for the
coinductive wrapper relation parametric not only in an abstract relation R but
also in properties of R.

It is worth noting that the presented approach of weak similarity is a natural
solution to problems arising from declaring closure properties such as transitivity



in coinductive relations that were discussed in [9]. Indeed, with our definitions,
infinite transitivity chains do not arise.

The paper [16] discusses an issue with the current implementation of most
dependently typed systems that does not easily allow to encode bisimilarity
into substitutive equality for reasoning about corecursive functions. This can
be relevant to mixing induction and coinduction since mixing is essentially a
fold method which, in order to work under case analysis (that is, unfolding),
has to contain a reference to an abstract unfolded relation. With current imple-
mentations of dependent elimination, restoring the concrete relation behind this
abstract one corresponds to a major part of work. Meanwhile, if we had elim-
ination being able to unfold this relation automatically, this would be a clear
time-saving benefit.

We can see that the traverse function trav defined in the paper is a prototype
substitution strategy in the sense that, if we define substitution monads for other
term languages and subtype relations of interest, the traverse function may carry
some non-trivial operational meaning such as that of various matching strategies
for (possibly extended) regular expressions. One of such interesting languages is
the language of regular types [15], that is, recursive types with product and sum
datatype constructors, which can be viewed as generalising regular expressions
with non-terminating left-recursion.
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