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Abstract. In this paper we show that a prototypic subtype relation that
can neither be defined as a least fixed point nor as a greatest fixed point
can nevertheless be defined in a dependently typed language with induc-
tive and coinductive types and an impredicative universe of propositions.
The definition proceeds alike a fold in functional programming, although
a rather unusual one, that is not applied to any starting object. There
has been a similar construction in Coq by Nakata and Uustalu recently,
however, our case is not concerned with bisimilarity but a weaker notion
of similarity that corresponds to recursive subtyping.

1 Introduction

It is common in practice to have datatypes formed by nested least and greatest
fixed points. For example, consider a grammar, and parse trees of derivations
in that grammar that are allowed to be infinite only below certain non-terminal
nodes. Or, a semantic model of a programming language where we distinguish
between termination and diverging computation. With dependent types, it is
possible to define types such as of grammar or parse tree. However, it is not
straightforward to define nested fixed points using implementations of inductive
and coinductive type definitions. This is mainly because these type definitions
are subject to strong syntactic checks in current implementations of dependently
typed languages. There are at least two different methods to encode nested fixed
points in type theory that are both known as mixed induction-coinduction, the
first is defined in [1] and the second, in [2]. The former uses a programming
construct of suspension computation monad, while the latter seems to rely on
a variant of fold function. Suspension monad is efficient and intuitive, however,
it has to be supported by the programming language rather than simply imple-
mented on top of it, for which many dependently typed provers would require
substantial re-engineering. Not having a sufficient resource for rewriting the im-
plementation of a prover, we choose the second, probably not so efficient but
maybe a bit more portable method and apply the fold pattern on top of the
language.

The language in question is Coq [3]. It has dependent products of the form
∀ (x : A). B where x is a variable which is bound in B; the case when x is not



free in B is denoted A → B which is a simple, non-dependent type. Also, Coq
features inductive and coinductive type definitions. For the sake of presentation,
we do not provide listings of Coq code, which would be plain ASCII. Instead,
throughout the paper, we use a human-oriented type-theoretic notation, where ?
denotes the universe of types (which is predicative, Type), ?′ denotes the universe
of propositions (which is impredicative, Prop), and inductive and coinductive
definitions are displayed in natural-deduction style with single and, respectively,
double lines.

Contribution. In this paper we show that a prototypic subtype relation that
can neither be defined as a least fixed point nor as a greatest fixed point can
nevertheless be defined in a dependently typed language with inductive and
coinductive types and an impredicative universe of propositions. The definition
proceeds alike a fold in functional programming, although a rather unusual one,
that is not applied to any starting object. There has been a similar construction
in Coq by Nakata and Uustalu recently [2], however, our case is not concerned
with bisimilarity but a weaker notion of similarity that corresponds to recursive
subtyping.

The motivation for this work is better understanding of termination issues
in subtyping, including formalisms such as extended regular expressions, and
paving the way for further extensions and provably correct practical applications.

Outline. In Sec. 2 we explain the subtyping relation construction method. In
Sec. 3 we define the object language of recursive types formally, using Coq as
the meta-language. In Sec. 4 we define subtyping in the meta-language. Sec. 5
contains the statement of soundness and completeness of recursive types with
respect to finite and infinite trees, and a description of a useful approach to
decidability of subtyping in a dependently typed language. The powerful method
of monadic substitution is described in Sec. 6. The alter ego mixed induction-
coinduction method is described in Sec. 7. Finally, in Sec. 8 we give concluding
remarks.

2 The fold pattern

Here is the polymorphic type of the familiar list-based left fold function:

foldl : ∀ (S T : ?) (f : T → S → T ) (a : T ) (l : list S). T

(On a fundamental approach to fold, the reader is advised to refer to [4].) Appli-
cation of foldl to an appropriately typed function f , an object a of target type
and a list l of objects of source type yields an object of target type T . The result
of iterative computation of f on the list l starting from a is aggregated on the
left.

Let us now drop the requirement that fold starts from some object. This
removes the first argument of the function f altogether. Our hypothetic fold has
two dependent arguments: a function f and a collection l (which is not quite a



list) of objects of S. This is in fact a description for the definition of the following
function type by coinduction:

f : (∀ E F. R E F → E ≤ F ) l : E ≤R F
≤-intro

E ≤ F
where E and F are polymorphic arguments. From its type, we can see that
≤-intro has two dependent arguments, f and l, and yields an object (in fact,
a proof) inhabiting a particular case of relation. The function ≤-intro is the
constructor of the coinductive relation ≤. The function f can indeed be seen
as a mapping of a proof that from an object E we can access another object
F by the relation R to a corresponding proof that from E we can also reach F
by ≤. In other words, f is a coercion from R to ≤. The interpretation of the
argument l is a bit more involved. Think of ≤R as a finite relation encapsulating
another, infinite one in such a way that an infinite number of steps is possible
only finitely. The latter sounds rather speculative, however, the intuition is that
≤R is alike a type of finite list of certain abstract, possibly infinite objects. The
codomain of≤-intro is a type of infinite object in which we collapse all the infinite
components of the argument l. The object in the codomain is coinductive, and it
is only thanks to the premisses of ≤-intro that we are able to compare elements
of pairs in the domain of ≤ in a finite number of steps possibly infinitely.

It is worth noting that having a coinductive type definition such as that of
≤ is nothing close to requiring an infinite amount of memory for objects of that
type. The shape of such an object is a regular tree which may have an infinite
unfolding but in itself is a finitely presented entity.

3 Recursive types

Below in this section we give a proper inductive definition of recursive types,
our object language, in Coq as the the meta-language. However, first recall a
traditional definition of the set of recursive types that uses a grammar [5, 6]:

E,F ::= ⊥ | > | X | E_F | µX. E_F

where X is a symbolic variable taken from a set of variables. The least fixed point
operator µ binds free occurrences of the variable X in E_F . This definition nei-
ther has products or sums that are needed for practical programming. However,
we do not consider product or sum types in this schematic implementation be-
cause their treatment is alike that of _, see, e.g., [6]. Moreover, we choose to
replace named variables in the definition by nameless de Brujin variables, which
yields an equivalent and yet more tangible construction.

Now, our working definition of recursive types is by induction as follows:

ty : N→ ?

⊥ : ty n > : ty n
i : In

Xi : ty n

E : ty n F : ty n

E_F : ty n
E : ty (1 + n) F : ty (1 + n)

µ E_F : ty n



where the constructors are, respectively, the empty type ⊥, the unit type >,
a variable, the function type constructor → and the least fixed point arrow
type constructor µ → . The dependent type In represents the first n natural
numbers, and therefore an object i of type In is a pair consisting of a natural
number m and a proof of m < n.

Recursive types have a correspondence with non-wellfounded (finite or infi-
nite) trees with the following definition by coinduction:

tree : N→ ?

⊥∞ : tree n >∞ : tree n
i : In

X∞
i : tree n

t : tree n t : tree n

t_∞u : tree n

Intuitively, trees are views of µ-types unfolded ad infinitum. We denote the tree
corresponding to a type E by JEK. The straightforward subtree relation tle n on
tree n is denoted by ≤∞ (omitting the implicit argument n):

tle n : tree n→ tree n→ ?′

⊥∞ ≤∞ t t ≤∞ >∞
i : In

X∞
i ≤∞ X∞

i

u1 ≤∞ t1 t2 ≤∞ u2

(t1_∞t2) ≤∞ (u1_∞u2)

Thus, two recursive types are in the subtype relation when their potentially infi-
nite unfoldings are in the subtree relation. Traditionally, subtyping theorems are
stated in terms of inductive limits of sequences of approximations of unfoldings
of recursive types (e.g., in [6]). Instead of using explicit induction in that way,
we rather rely on dependent types of the CIC which allow to define a powerful
monadic structure encapsulating unfolding ad infinitum. The point here, similar
to a remark made by Amadio and Cardelli in [6], is that unfoldings of recursive
types are regular trees, which we treat using a mix of induction and coinduction.

4 Definition of recursive subtyping

We define the weak similarity relation tyle n ⊆ ty n×ty n by folding the inductive
part of the definition into the coinductive one. Our technique is an illustration of
a generic method for folding one relation in another. We use the impredicative
universe of propositions that we denote by ?′, which is needed for the proof of
soundness and completeness. First, we define the inductive part tylei n R of the
subtyping relation (denoting tylei n R E F by E ≤R F , suppressing the implicit
argument n):

tylei : ∀ n. (ty n→ ty n→ ?′)→ ty n→ ty n→ ?′

⊥ ≤R E E ≤R >
R E F R G H
F_G ≤R E_H µ E_F ≤R unfld E F

unfld E F ≤R µ E_F E ≤R E
E ≤R F F ≤R G

E ≤R G



where unfld is the operation that unfolds a µ-redex by substituting the variable
0 in the term E_F with the term µ E_F This operation is defined in Sec. 6.
Having the rules for reflexivity and transitivity in the inductive part of the
subtype relation is essential for this construction. Indeed, by having these rules
explicitly, we are able to compare elements of pairs in the domain of the subtype
relation in a finite number of steps possibly infinitely. Leaving transitivity out
of the definition would collapse finite and infinite transitivity chains to infinite
ones only.

Next step is to fold the inductive relation and produce a weak similarity. This
is done by the single-constructor coinductive type:

tyle n : ty n→ ty n→ ?′

We denote tyle n E F by E ≤ F .

∀ E F. R E F → E ≤ F E ≤R F

E ≤ F

The only introduction rule for ≤ has two hypotheses, namely, that R is a sub-
relation of ≤, and that F is ≤R-accessible from E in finitely many steps (since
≤R is an inductive relation).

5 Soundness and completeness

Main Theorem (Soundness and completeness).

∀ (n : N) (E F : ty n). E ≤ F ↔ JEK ≤∞ JF K

The “only if” direction (completeness) follows by a straightforward application
of the coinduction principle. For the “if” direction (soundness), we define the
weak head normal form of the relation ≤∞ and solve the problem via this notion,
which is a common workaround helping to ensure syntactic guardedness of the
proof [1, 2].

The soundness and completeness result allows us to tell that our definition
of syntactic subtyping is correct with respect to the tree semantics. In a proof
assistant this is only a change in representation. Besides, both representations
are propositional. Since proof search is undecidable on the universe of propo-
sitions in general, it is impractical, and likely impossible, to use either of the
representations for efficient proof search in a prover. Instead, we can use the
approach which is known as the two-level approach [8] or small-scale reflection
[9].

We can implement a decision procedure for a class of propositional goals
G ∈ ?′ by

1. first defining a type of codes goal : ? and an interpretation function J K :
goal→ ?′ surjective on G,



2. and then defining a decision algorithm dec : goal→ bool which can be proved
sound and complete with respect to the propositional interpretation, that is,

∀g : goal. dec g = true↔ JgK

As a result, to prove P ∈ G, it is sufficient to compute dec g, where g is the code
for P .

Alternatively, soundness and completeness of the decision algorithm is an
object of inductive type decidable : ?′ → bool→ ? defined by

P
dT

decidable P true
¬P

dF
decidable P false

Thus decidable P b denotes the fact that provability of P is decidable by the
algorithm b. As a side note, the above inductive type can be extended to account
for partial algorithms, for example, three-valued ones, where one of the values
stands for the undefined result.

Common decision procedures may be based on various notions of deriva-
tive. For example, decision procedures for regular expression subtyping may be
based on deterministic [10] or non-deterministic derivatives [11]. Both kinds of
derivative can be implemented in the type theory of Coq [12, 13].

6 Monadic substitution

We implemented in Coq a generic notion of symbolic substitution introduced in
[14] for untyped lambda terms. It is based on the notion of universe of types,
that is, a function space A → ? where A can be any given type and ? is the
polymorphic type of all types. A is said to index the type ?. For effective indexing,
the index type should be countable, and for that, it suffices to consider the type
N of natural numbers. Following McBride [15], we call the resulting type of
universe stuff :

stuff : ?

stuff = N→ ?

For a given n, the intended meaning of stuff n is stuff with n variables.
In the foundation of the method, there is a type of monadic structure called

kit [15]:
kit : stuff → stuff → ?

var : ∀ n. In → U n lift : ∀ n. U n→ T n wk : ∀ n. U n→ U (1 + n)

Kit var lift wk : kit U T

A substitution of type sub T m n is such that it applies to stuff with at most
m variables and yields stuff with at most n variables. Hence a substitution is
essentially an m-tuple of T n, that is,

sub : stuff → N→ N→ ?



sub T m n = m-tuple (T n)

In order to establish compositionality on substitutions, we define applicative
structure on substitutions which is called subApp:

subApp : stuff → ?

var : ∀ n. In → T n app : ∀ U m n. kit U T → T m→ sub U m n→ T n

SubApp var app : subApp T

A straightforward substitution strategy is implemented by the function trav
below that traverses a term E and applies a given substitution s. Note that,
since s is a tuple, si is a consistent notation for the i-th element of s.

trav : ∀ T m n. kit T ty→ ty m→ sub T m n→ ty n

trav K ⊥ s = ⊥
trav K > s = >
trav K Xi s = let Kit li = K in li si

trav K (F_G) s = (trav K F s)_(trav K G s)

trav K (µ F_G) s = µ (trav K F (lift sub K s))_(trav K G (lift sub K s))

Here, lift sub is a function that lifts a substitution to the next order, that is,
shifts the indices of active variables in the substitution by +1. This function has
type

∀ (T U : stuff) (K : kit T U) m n. sub T m n→ sub T (1 +m) (1 + n)

The traverse function allows to define an instance of the applicative structure
on ty that we call tyApp, in Figure 6. In the definition of tyApp, we denoted the
constructor of nameless variables by X. This is a consistent notation since we
defined, in Sec. 3, that Xi is of type ty n for a given natural number n and a
bounded number i of type In. So, X is a function of type ∀ n. In → ty n. The
monadic structure on ty can now be defined using the endomorphism constructor
stuffKit. The function subty0 substitutes the 0-th variable with a given µ-type
E. It is defined using a generic substitution sub0. The type of sub0 is

∀ (T U : stuff) (K : kit T U) n (E : T n). sub T (1 + n) n

Weakening is specialised on ty by the function wkty. The function sbst is capture-
avoiding substitution of a given term F for all occurrences of the 0-th variable
of a term E. At last, unfld unfolds a µ-redex.

Unlike monadic presentations, named presentations of terms with holes can
be cumbersome and have limited application. Among the closest nameless but
not monadic presentations are Capretta’s polynomial expressions with metavari-
ables [8]. They require proving equality of substitutions in a context. Monadic
presentations of terms allow to have substitutions as part of the construction
and also allow for free to have a notion of a term with a hole. For example, it
can be seen that Capretta’s tree expressions with metavariables have the same
expressive power as monadic substitutions on polynomial trees.



tyApp : subApp ty

tyApp = SubApp X trav

tyKit : kit ty ty

tyKit = stuffKit tyApp

subty0 : ∀ n (E : ty n). sub ty (1 + n) n

subty0 = sub0 tyKit

wkty : ∀ n. sub ty n (1 + n) → ty n→ ty (1 + n)

wkty = wkstuff tyKit tyApp

subKit : kit ty ty

subKit = Kit var (λ n. id (ty n)) (λ n. wkty (wk sub n tyKit))

sbst : ∀ n. ty (1 + n) → ty n→ ty n

sbst E F = trav subKit E (subty0 F )

unfld : ∀ n. ty (1 + n) → ty (1 + n) → ty n

unfld E F = sbst (E_F ) (µ E_F )

Fig. 1. The structure of substitution on ty.

7 Alternative approach to subtyping: suspension monad

A practical approach to nested induction-coinduction is presented in Agda [16].
The authors provide, at the language level, a type function ∞ : ? → ? which
marks a given type as being coinductive. This type function has an interpretation
as a suspension type constructor that can be used in functional languages with
eager evaluation to model laziness. This interpretation is faithful since ∞ is
supplied with delay and force operators ] : ∀ A. A→∞A and [ : ∀ A. ∞A→ A
respectively.

One of the immediate advantages of having the suspension monad supported
by the language is efficiency. This has also a positive effect on succinctness of
function definitions by recursion-corecursion since the implementation includes
an improved termination checker capable of inferring termination guarantees
for such function definitions. This leaves behind the more syntactically oriented
termination checker of Coq.

On the other hand, without support of suspension monad in Coq, we cannot
follow this approach there. This is why it is very interesting to find ways to use
type theory effectively without re-engineering the implementation. Also, note
that currently the suspension monad does not allow to express directly type
definitions which have an outer least fixed point and an inner greatest fixed
point because of the way the termination checker of Agda works.

8 Conclusions

We showed how a rather simple fold encoding pattern can be used to define a
prototypic subtyping relation: µ-types without products or sums. Our study is



closely related to the work of Altenkirch and Danielsson [1] who define subtyping
using a suspension computation monad inspired by semantics of programming
languages. The method with the suspension monad turns out to be inapplicable
outside the special setting of [1]. Here, we follow a method that allows to encode
infinitary subtyping by folding an inductive relation into a coinductive one, which
can be done using standard type-theoretic means. It is worth noting that the
presented approach of weak similarity is a natural solution to problems arising
from declaring closure properties such as transitivity in coinductive relations that
were discussed in [7]. Indeed, with our definitions, infinite transitivity chains do
not arise.

The paper [17] discusses an issue with the current implementation of the
most dependently typed systems that does not easily allow to encode bisimi-
larity into substitutive equality for reasoning about corecursive functions. This
can be relevant to mixing induction and coinduction since mixing is essentially
a fold method which, in order to work under case analysis (that is, unfolding),
has to contain a reference to an abstract unfolded relation. With current imple-
mentations of dependent elimination, restoring the concrete relation behind this
abstract one corresponds to a major part of work. Meanwhile, if we had elim-
ination being able to unfold this relation automatically, this would be a clear
time-saving benefit.

We can see that the traverse function trav defined in the paper is a prototype
substitution strategy in the sense that, if we define substitution monads for other
term languages and subtype relations of interest, the traverse function may carry
some non-trivial operational meaning such as that of various matching strategies
for (possibly extended) regular expressions. One of such interesting languages is
the language of regular types [15], that is, recursive types with product and sum
datatype constructors, which can be viewed as generalising regular expressions
with non-terminating left-recursion.
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