
Regular expression containment as a proof
search problem

Vladimir Komendantsky

School of Computer Science
University of St Andrews

St Andrews, KY16 9SX, UK
vk10@st-andrews.ac.uk

Abstract. Regular expression containment has recently enjoyed a re-
newed interest as a type-theoretic problem. By viewing regular expres-
sions as types, it is possible to view containments as functions that coerce
one regular expression into another. Containment of a given regular ex-
pression in another one is therefore a coercion inference problem. It is
not straightforward how to apply here generic proof-theoretic approaches
such as those based on the MALL with the least fixpoint. We propose
an alternative approach, still a purely syntactic one, to decide contain-
ment in reasonable time. We employ the partial derivative construction
that, for a regular expression E, yields a syntactic NFA recognising the
language of E; and, for a containment E ≤ F , it yields a simulation of
E by F , with the empty simulation representing the absence of coercion.
We are currently working on a proof of completeness of this optimised
coercion search algorithm.

1 Introduction

Our general idea is that termination of proof search of containment can be
proved by a method involving our finitary coinduction principle for containment
(Theorem 2) defined in terms of Mirkin prebase [15].

We provide a system whose proof derivations characterise regular expression
containments in a similar sense in which, for example, derivations in the in-
tuitionistic natural deduction calculus for implication characterise intuitionistic
implicational formulas. Let us illustrate the analogy by recalling the introduction
rule for implication:

[p]ψ
....
q

p→ q

and comparing it with the following fixed point rule where o(E) is the constant
part of the regular expression E, namely, 1 if E is nullable, and 0 otherwise:

o(E) ≤ o(F)

[E ≤ F]ψ
....

E′0 ≤ F ′0 . . .

[E ≤ F]ψ
....

E′k ≤ F ′k
E ≤ F FIXψ

In each of the two cases, rule applications labelled with ψ discard assumptions
having the same label. It turns out that the rule FIXψ is an introduction rule by
behaviour rather than an elimination rule, which relates it directly to a sequent-
style system. This is reasonable despite multiple premises of the fixed point rule.
Indeed, in a suitable inference system, the conclusion can be annotated with a
term bound by a least fixed point operator.

In this paper, a notion of natural deduction is provided for terminating
proof search of regular expression containment. The cornerstone of the natural-
deduction style system we call NR is a special computational fixed point rule
FIXψ that, if interpreted premises first, computes a simulation between two reg-
ular expressions E and F , denoted E ≤ F , given simulations between a certain
combination of partial derivatives of these regular expressions, and between the
constant parts of these regular expressions. This rule is a fixed point rule because
every immediate subtree, whose root is a containment of two partial derivatives,
has a premiss E ≤ F which is discarded as soon as the fixed point rule is applied.
The fixed point rule, appropriately extended, provides an efficient proof search
strategy for deciding regular expression containment.

Motivation. Efficient and complete proof search of regular expression contain-
ment is currently an open problem [11]. The minimal syntactic NFA construction
of prebase used in this paper provides the necessary efficiency and we are working
on a completeness proof by application of the coinduction principle for prebases
(Corollary 2).

Outline. In Section 2, we recall basic notions of formal language theory such as
non-deterministic automata or regular expressions. In Section 3, we recall the
notion of Mirkin prebase [15] first, as an abstract inductive structure satisfying
certain semantic properties, and second, as a syntactic construction parametrised
by a given regular expression. Already for the abstract structure of prebase, we
provide two very useful finitary coinduction proof principles: one, for equivalence
of regular expressions (stated in terms of bisimulation), and another, for contain-
ment of regular expressions (stated in terms of simulation). In fact, the former
subsumes the latter. In Section 4, we define the labelled natural-deduction style
calculus NR, with context-free rules, and state that it is a sound and complete
containment inference system with respect to the standard language semantics.
We give conclusions in Section 6.

2 Preliminary notions

Let A = {a0, . . . , an−1} be a finite set of symbols. In the paper, we assume
that A is a given fixed alphabet and denote the i-th symbol of A by ai. We
employ coalgebraic definitions of automata which are quite well-established since
[16] for our work with coinductive relations of simulation and bisimulation. A
non-deterministic automaton with input alphabet A is a triple Q = 〈Q, o, t〉
consisting of a possibly infinite set Q of states, an output function o : Q→ 2 and
a transition function t : Q→ (A→ 2Q) where 2 = {0, 1}, for regular expressions
0 and 1, is a set isomorphic to the set of boolean values, and 2Q is the set of
subsets of Q. The output function o indicates whether a state q is accepting,
o(q) = 1, or not, o(q) = 0. The transition function t assigns a subset of states
Q′ to a state q after reading an input symbol a, which is denoted t(q)(a) = Q′.

A simulation between two automata Q = 〈Q, o, t〉 and Q′ = 〈Q′, o′, t′〉 is a
relation R ⊆ Q×Q′ such that, for all 〈q, q′〉 ∈ R and a ∈ A, o(q) ≤ o′(q′) and
for every r ∈ t(q)(a) there exists r′ ∈ t′(q′)(a) such that 〈r, r′〉 ∈ R. Existence
of a simulation between Q and Q′ means that Q′ accepts at least the language
accepted by Q, since acceptance is preserved under simulation. We write q ≤fin
q′ if there is a finite simulation R such that 〈q, q′〉 ∈ R. The relation ≤fin is the
union of all finite simulations and therefore the greatest simulation, also called
finite similarity. In the paper, infinite simulations do not arise because we only
construct automata with finite sets of states.

A bisimulation between Q = 〈Q, o, t〉 and Q′ = 〈Q′, o′, t′〉 is a relation R ⊆
Q×Q′ such that, for all 〈q, q′〉 ∈ R and a ∈ A, o(q) = o′(q′) and for every
r ∈ t(q)(a) there exists r′ ∈ t′(q′)(a) such that 〈r, r′〉 ∈ R. If there exists a finite
bisimulation R such that 〈q, q′〉 ∈ R, we write q ∼fin q′. A bisimulation is clearly
a simulation. The converse holds only in case the inverse of the simulation is also
a simulation.

Regular expressions are generated by the following grammar:

E,F ::= 0 | 1 | ai | E + F | E × F | E∗

for i ∈ [0, n − 1], where ai ∈ A. Following the tradition, the operation × has
greater preference over +. If expressions are not parenthesised explicitly, paren-
theses are assumed with association to the left. Let ||E|| denote the number
of distinct alphabet symbols in the regular expression E, and let o(E) be 1 if
nullable(E) is true, and 0 otherwise, where nullable is defined by recursion on E
as follows:

nullable(0) = true

nullable(1) = false

nullable(ai) = false

nullable(E1 + E2) = nullable(E1) || nullable(E2)

nullable(E1×E2) = nullable(E1) && nullable(E2)

nullable(E∗1) = true

The language denoted by a regular expression is defined by recursion on the
regular expression as follows:

L(0) = ∅ L(1) = {ε}
L(ai) = {ai} L(E + F) = L(E) ∪ L(F)

L(E×F) = L(E) · L(F) L(E∗) =
⋃
i∈N

Li

where ∪ is the union of sets, · is the operation of language concatenation:

L ·M = {w | w = uv ∧ u ∈ L ∧ v ∈M}

and Li is the i-th power of the language L:

L0 = 1 Li+1 = L · Li

For regular expressions E and F , by E =L F and E ≤L F we denote equality
of the languages denoted by E and F and, respectively, containment of the
language denoted by E in the language denoted by F .

3 Prebases

The goal of this section is, first, to give a definition of a generic prebase [15, 7,
2, 1], and then, define a construction of a prebase for a given regular expression.
This way we single out what properties a prebase should have from how it is
constructed.

We start with an algorithmic motivation. First let us define a monomial to
be a regular expression whose main operation is not +, and a polynomial to be
a finite, possibly empty sum of monomials. We say that a monomial E is in head
normal form if it is of the kind aj×F for some symbol aj and a regular expression
F . Suppose we are given a polynomial E = E1 + · · ·+Ek. The polynomial E can
be reduced to a polynomial with all monomials in head normal form by recursive
application of the following rewrite rule schemes to every monomial:

(F1 × · · · × Fl × Fl+1)×G 7→ (F1 × · · · × Fl)× (Fl+1 ×G)

(F1 + · · ·+ Fl)×G 7→ F1 ×G+ · · ·+ Fl ×G
F ∗ ×G 7→ F × (F ∗ ×G) +G

F ∗ 7→ F × F ∗ + 1

(1)

Then, the set of monomials can be rearranged using the fact that the operation
+ is associative, commutative and idempotent expressed by the following ACI
equivalences:

F + (G+H) =L (F +G) +H

F +G =L G+H

F + F =L F

(2)

as well as using the following equivalence from the structure of additive monoid
on regular languages on A:

F =L F + 0 (3)

Therefore E can be reduced to a polynomial

E1 = ai1 × E1
1 + · · ·+ aip1 × E

1
p1 + o(E)

Then, we apply the same recursive algorithm to reduce E1
1 , . . . , E

1
p1 , and so on,

until the obtained polynomial is of the form

Eq = aj1 × E
q
1 + · · ·+ ajpq × E

q
pq + o(Eq)

where Eq1 , . . . , E
q
pn are already defined, that is, these regular expressions appear

in the set
E1

1 , . . . , E
1
p1 , . . . , E

q−1
1 , . . . , Eq−1pq

Termination of this recursive process is the goal of Theorem 3 in this section,
proved by structural induction on E.

Example 1. Consider a concrete alphabet A = {a, b} and a regular expression
E = (a× (a× b)∗ × a)∗ over this alphabet. Using the four rewrite rule schemes
(1), the ACI-equivalences (2) and the equivalence (3), we obtain the following
system of equations:

E =L a× (a× b)∗ × a× E + 1

=L a× E1 + o(E),

E1 = (a× b)∗ × a× E
=L (a× b)× E1 + a× E
=L a× E2 + a× E + o(E1),

E2 = b× E1

=L b× E1 + o(E2)

Thus the regular expression E is described in terms of its output and the regular
expression E1 which denotes a residual language that results from taking those
words in the language of E that start from the symbol a and removing that
occurrence of a. In the terminology of this section, the prebase of E consists of
regular expressions E,E1 and E2.

Now we will define this informal algorithm more formally using the notion
of prebase. Note the difference in the style of definition: We state the desired
properties first and associate these to a prebase, and then we provide an inductive
construction satisfying the given properties in the proof of Theorem 3. We call
this style of definition declarative as opposed to the algorithmic style of the
informal definition.

Recall that we defined n to be the number of symbols in the given alphabet
A. A prebase P is a triple 〈m,P,M〉 with the following components:

– m is a positive natural number.
– P is an m-tuple of regular expressions P = 〈E0, . . . , Em−1〉 such that the

following semantic language equivalences hold for i ∈ [0,m − 1] and j ∈
[0, n− 1]:

Ei =L a0×
(∑

Mi,0

)
+ · · ·+ an−1×

(∑
Mi,n−1

)
+ o(Ei) (4)

where Mi,j is a finite subset of P , that is,

Mi,j =
⋃

k∈Ii,j

Ek, Ii,j ⊆ [0,m− 1]

and the regular expression denoted
∑
Mi,j is the sum of elements of Mi,j .

The sum is 0 if and only if Mi,j is empty.
– M is the matrix [M]i,j whose cells are these individual sets Mi,j . We intro-

duce matrices to spell out the straightforward connection between prebases
and non-deterministic finite automata.

Every prebase P = 〈m,P,M〉, where P = 〈E0, . . . , En−1〉, corresponds to
the finite non-deterministic automaton 〈P, o,M〉, where o is defined on regu-
lar expressions, which we will also denote by P since prebases and their non-
deterministic finite automata provide two views on one and the same class of
systems. The following notation is handy in the automaton view. Assume Mi,ε,
denotes the set Mi,j , where ε denotes the empty word. For a non-empty word
w = aju ∈ A∗, let Mi,w denote the union of all sets Mi′,u such that Ei′ ∈Mi′,j .

In the following two theorems, we establish coinduction proof principles in
terms of prebases.

Theorem 1 (Finitary coinduction principle for equivalence). For all pre-
bases P = 〈m,P,M〉 and P ′ = 〈m′, P ′,M ′〉, where P = 〈E0, . . . , Em−1〉 and
P ′ = 〈E′0, . . . , E′m′−1〉, and natural numbers i < m, i′ < m′,

Ei ∼fin E′i′ if and only if Ei =L E
′
i′

Proof. For the “if” direction, assume Ei =L E
′
i′ . Then {〈F, F ′〉 | F ∈Mi,w, F

′ ∈
M ′i′,w and w ∈ A∗} can be easily checked to be a bisimulation between Ei and
E′i′ . Its finiteness follows by the definition of prebase matrix. For the “only if”
direction, consider induction on the length of a word w such that Mi,w ∼fin
M ′i′,w. The base case follows immediately. For the inductive step, we rewrite
with the inductive hypothesis in the prebase equation (4) to yield the required
conclusion. ut

In fact, the above proof can be transformed to a proof of the weaker finitary
principle below, by replacing bisimulation with simulation.

Theorem 2 (Finitary coinduction principle for containment). For all
prebases P = 〈m,P,M〉 and P ′ = 〈m′, P ′,M ′〉, where P = 〈E0, . . . , Em−1〉 and
P ′ = 〈E′0, . . . , E′m′−1〉, and natural numbers i < m, i′ < m′,

Ei ≤fin E′i′ if and only if Ei ≤L E′i′

We have defined the generic notion of prebase. Now we will construct a
prebase for a given regular expression. In Theorem 3, the prebase algorithm by
structural induction on a regular expression is an optimised version of the one
given by Mirkin in the main theorem of [15]. The prebase tuple is defined for
a given regular expression, as well as the corresponding matrix. Both tuple and
matrix are parametrised by the given regular expression.

Theorem 3. For any given regular expression E, we can construct a prebase
P(E) = 〈m,P (E),M(E)〉 such that

(i) E ∈ P (E), namely, E = E0;
(ii) cells of the matrix of P (E) may contain elements of 〈E1, . . . , Em−1〉 only;

(iii) |P (E)| ≤ ||E||+ 1.

We provide a proof outline of Theorem 3 in Appendix A. Now we state two
straightforward corollaries of Theorems 1 and 2.

Corollary 1 (of Theorem 1). For any regular expressions E,F and their pre-
bases with tuples P (E) = 〈E = E0, . . . , EmE−1〉 and P (F) = 〈F = F0, . . . , FmF−1〉

E0 ∼fin F0 if and only if E =L F .

Corollary 2 (of Theorem 2). For any regular expressions E,F and their pre-
bases with tuples P (E) = 〈E = E0, . . . , EmE−1〉 and P (F) = 〈F = F0, . . . , FmF−1〉

E0 ≤fin F0 if and only if E ≤L F .

Corollary 2 is directly applied to derive the inference rule schema FIXψ.

4 Labelled natural deduction proof system NR

The proof system introduced below is based on Kozen’s Kleene algebra axioma-
tisation of regular expression equivalence [14]. Although Kozen’s formal notion
of containment E ≤ F is E + F = F , we have containment as primitive, which
splits every equality rule of the kind E = F of Kleene algebra in two, E ≤ F
and F ≤ E, which we denote by E ≤≥ F in Fig. 1.

Assume a countably infinite set of labels Ψ which is disjoint, for the purpose of
disambiguation, with the set of regular expressions over A. Formulas of NR are
regular expression containments. Assumptions are Ψ -labelled formulas. Axioms
and rules are those defined in Figures 1 and 2. Idempotent semiring axioms in
Figure 1 can be read both ways, since their intended meaning is the greatest
bisimulation on the l.h.s. and the r.h.s. regular expressions, that is, a two-sided
simulation. In Fig. 2, the notation M(E)q,j ≤ M(F)r,j is a shorthand for a set
of derivations: For every j and E′ ∈ M(E)q,j there exists F ′ ∈ M(F)r,j such
that E′ ≤ F ′.

Derivations in NR are proof trees whose leaves are axioms or assumptions
such that different formulas in assumptions are labelled by different labels. The
root formula in a tree is the conclusion of the proof derived by inference rules

Idempotent semiring axioms (bi-directional schemes):

E + (F + G) ≤≥ (E + F) + G

E + F ≤≥ F + E

E + 0 ≤≥ E

E + E ≤≥ E

E×(F×G) ≤≥ (E×F)×G

1×E ≤≥ E

E×1 ≤≥ E

E×(F + G) ≤≥ (E×F) + (E×G)

(E + F)×G ≤≥ (E×G) + (F×G)

0×E ≤≥ 0

E×0 ≤≥ 0

Containment rules:

E ≤ E
E ≤ F F ≤ G

E ≤ G

E ≤ F G ≤ H

E + G ≤ F + H

E ≤ F G ≤ H

E×G ≤ F×H

Kleene Algebra rules:
1 + (E×E∗) ≤ E∗

1 + (E∗×E) ≤ E∗

E×F ≤ F

E∗×F ≤ F

E×F ≤ E

E×F ∗ ≤ E

Fig. 1. Regular expression containment axiomatisation KA≤

Computational rules:

o(P (E)q) ≤ o(P (F)r)

(E ≤ F)ψ
....

M(E)q,j ≤ M(F)r,j

P (E)q ≤ P (F)r
FIXψq,r

o(E) ≤ o(F)

[E ≤ F]ψ
....

M(E)0,j ≤ M(F)0,j

E ≤ F
FIXψ0,0

(Plus all axioms and rules of KA≤)

Fig. 2. System NR (includes KA≤)

of NR. There are two kinds of occurrences of assumptions with label ψ in a
proof tree: open, if the path from the occurrence in question to the root does
not contain an application of FIXψ0,0 which closes this assumption, and closed

otherwise. Note that an application of the rule scheme FIXψq,r, where q 6= 0

and r 6= 0, does not close the assumption (E ≤ F)ψ. Applications of the rule

FIXψ0,0 are required to close (discharge) at least one non-empty class of open
occurrences of the same formula labelled by ψ. The computational interpretation
of the rule FIXψ0,0 is the unfolding of the greatest finite simulation construction
that is obtained thanks to Corollary 2, if all the rules in the right branches are
instances of FIXψq,r.

By `NR E ≤ F we denote that E ≤ F is a theorem of NR, that is, there is
in NR a closed derivation ∇ with no open assumptions, and with the conclusion
E ≤ F .

Theorem 4. The system NR is sound and complete with respect to regular
expression containment. That is, for any regular expressions E,F ,

`NR E ≤ F if and only if E ≤L F

Proof (Outline). For the “if” direction, assume E ≤L F . By Corollary 2, we
have E ≤fin F , from which we can extract a closed derivation in NR. For the
“only if” direction, assume ∇ is a closed derivation with conclusion E ≤ F . By
induction on the height of ∇, a finite simulation E ≤fin F can be obtained as
{E′ ≤ F ′ | E′ ≤ F ′ ∈ ∇} to yield the conclusion by application of Corollary 2.

5 Related work

Partial derivatives of regular expressions are rather widely known [3, 8], but
much less so compared to (total) Brzozowski derivatives [6] that are employed
to guarantee termination of regular expression matching, parsing and subtyping
algorithms [9, 11]. An algorithmic definition for either total or partial derivative
is treated as standard. There is also a very early and equivalent form of partial
derivative defined declaratively [15, 7, 2, 1], by structural induction as opposed
to structural recursion. The declarative method due to Mirkin is arguably bet-
ter suited for provably-correct implementations in an inductive theorem prover
[1, 13]. The algorithmic version of total derivative is used in [10] to define a

derivative total partial

algorithmic Brzozowski [6] Antimirov [3]
declarative Spivak (circa 1963, [15]) Mirkin [15]

Fig. 3. Versions of derivatives of regular expressions.

natural-deduction style calculus for regular expression equivalence. This requires

to consider the infinite factor-automaton on regular expressions modulo idem-
potent semiring equivalence (called ACI+-equivalence in [10]) because of the
way monomials are presented in the linear form of a regular expression. On the
contrary, partial derivatives, being certain ordered sets of monomials, do not
require a factor-automaton.

Spivak’s declarative analogue of Brzozowski derivative is also called the base
B of a regular expression in [15], and is a special case of Mirkin prebase, the one
where each cell of the prebase matrix in equation (4) of Section 3 is a singleton
set containing a regular expression from the set B. A base of E corresponds
to a deterministic automaton accepting the language denoted by E. Every pre-
base can be converted to an equivalent base by an analogue of the automaton
determinisation algorithm.

Proof search of regular expression containment can be viewed from a type
theoretic perspective if terms are assigned to regular-expressions-as-types, which
is done in [11, 12]. The resulting axiomatic system is sequent-style rather than
natural-deduction style, although the only essential difference concerns the fixed
point rule. Even so, the fixed point rule of the sequent-style system does discard
the fixed point assumption, although it is subject to syntactic guardedness checks
in order to preserve soundness of the system, without a guarantee of recursively
decreasing computation such as in the system NR.

A notion of proof search is provided in [11] by referring to Grabmayer’s
natural-deduction style calculus for regular expression equivalence [10] which is
based on a finitary coinduction principle. This has a direct effect on the amount
of purely syntactic proof rules to deal with ACI+-equivalence. Our point of hav-
ing a fixed point rule that guarantees termination is that proof search can be
internal to the proof system rather than implemented outside the proof system.
Grabmayer’s coinduction principle is designed for equivalence proofs, not con-
tainment proofs. The latter observation has influenced a decision to seek for a
computational fixed point rule with intrinsic proof search properties.

It is quite straightforward that certain basic problems on regular expressions
such as matching can be encoded, by restricting the form of judgement, in in-
tuitionistic linear logic (ILL) [5], that is, logic of linear connectives ⊗,(,&,⊕, !
and logical constants I, t, f . Here we have the following correspondence between
connectives and constants as in Figure 4. However, problems such as containment

regular expressions ILL

void 0 f
alternation + ⊕
empty word 1 I
concatenation × ⊗
iteration ∗ !

Fig. 4. Embedding of the language of regular expressions into ILL.

or equivalence of regular expressions require constructing proofs as fixed points,
for which the standard ILL is not sufficiently expressive since a higher-order
fixed point operator would be required.

In this context, it is appropriate to mention that a linear logic with first-order
fixed point operators was investigated in [4] in the context of a focused approach
to terminating proof search. The logic µMALL is obtained by enriching the
multiplicative additive fragment of linear logic (MALL) with equality, first-order
quantifiers and certain least and greatest fixed point operators. The fixed point
operators generalise the standard linear logic exponentials ! and ? in a way that
allows to represent induction and coinduction by means of structural sequent
rules. The problem with straigthforward iterative proof search in µMALL is
that it is not practically possible because cut-free derivations are not analytic.
Meanwhile, focused proof search allows to restrict the search space to resonable
bounds and guarantees completeness (but not decidability).

6 Conclusions

We discussed an application of the finitary coinduction principle for prebases
to deciding regular expression containment. The inference system NR can only
be used for checking whether a proof derivation produces a valid coercion but
also for generating such a coercion. We showed how the rule FIXψ0,0, given a
containment problem E ≤ F , extends to take into account the one-step relation
between partial derivatives in the prebases of E and F , which means that this
rule provides a complete proof search strategy for containment. A rigorous proof
of completeness of this proof search strategy is a work in progress.

References

1. J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial derivative
automata formalized in Coq. In Implementation and Application of Automata
2010, volume 6482/2011 of Lecture Notes in Computer Science, pages 59–68, 2011.

2. M. Almeida, N. Moreira, and R. Reis. Antimirov and Mosses’ rewrite system
revisited. International Journal of Foundations of Computer Science, 20(4):669–
684, August 2009.

3. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, 1996.

4. D. Baelde. A linear approach to the proof-theory of least and greatest fixed points.
PhD thesis, École Polytechnique, 2008.

5. G. M. Bierman. On Intuitionistic Linear Logic. PhD thesis, Wolfson College,
Cambridge, 1994.

6. J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
7. J. A. Brzozowski. Review: B. G. Mirkin, An algorithm for constructing a base in

a language of regular expressions. Journal of Symbolic Logic, 36(4):694, December
1971.

8. J.-M. Champarnaud and D. Ziadi. From Mirkin’s prebases to Antimirov’s word
partial derivatives. Fundam. Inf., 45:195–205, January 2001.

9. N. A. Danielsson. Total parser combinators. In Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP ’10, pages
285–296, New York, NY, USA, 2010. ACM.

10. C. Grabmayer. Using proofs by coinduction to find “traditional” proofs. In J. L.
Fiadeiro, editor, Proceedings of CALCO 2005, volume 3629 of LNCS, 2005.

11. F. Henglein and L. Nielsen. Declarative coinductive axiomatization of regular
expression containment and its computational interpretation (preliminary version).
Technical Report 612, Department of Computer Science, University of Copenhagen
(DIKU), February 2010.

12. F. Henglein and L. Nielsen. Regular expression containment: Coinductive ax-
iomatization and computational interpretation. In Proc. 38th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM,
January 2011.

13. V. Komendantsky. Computable partial derivatives of regular expressions, 2011.
Submitted.

14. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366–390, 1994.

15. B. G. Mirkin. New algorithm for construction of base in the language of regular
expressions. Tekhnicheskaya Kibernetika, 5:113–119, 1966. English translation in
Engineering Cybernetics, No. 5, Sept.–Oct. 1966, pp. 110-116.

16. J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In
D. Sangiorigi and R. de Simone, editors, CONCUR ’98, volume 1466 of LNCS,
pages 194–218. Springer, 1998.

A Proof of Theorem 3

Proof (Outline). By induction on E, we define:
Basis.

1. P (0) = {0} and M(0) = λ i j. ∅.
2. P (1) = {1} and M(1) = λ i j. ∅.

3. P (ak) = {ak, 1} and M(ak) = λ i j.

{
if i = 0 and j = k then {1}
else ∅.

Induction step. Let us denote by � the operation of vertical concatenation of
two matrices of the same width. The width is not changing with induction step
since it is fixed to be the number of symbols in A.

1. P (E + F) = {E0 + F0, E1, . . . , E|P (E)|−1, F1, . . . , F|P (F)|−1}.

M(E + F) =
[
M(E)0,j ∪M(F)0,j

]
0,j
�
[
M(E)

]
0<i,j

�
[
M(F)

]
0<i,j

2. P (E×F) = {E0×F0, E1×F0, . . . , E|P (E)|−1×F0, F1, . . . , F|P (F)|−1}.

M(E×F) =

[((∑
M(E)i,j

)
×F0

)
∪
(
o(Ei)×

(∑
M(F)0,j

))]
i,j

�[
M(F)

]
0<i,j

3. P (E∗) = {E∗0 , E1×E∗0 , . . . , E|P (E)|−1×E∗0} where E∗0 should be read as (E0)∗.

M(E∗) =

[(∑
M(E)0,j

)
×E∗0

]
0,j

�[((∑
M(E)i,j

)
×E∗0

)
∪
(
o(Ei)×

(∑
M(E)0,j

)
×E∗0

)]
0<i,j

Preservation of the property (i) is straightforward. The properties (ii) and (iii)
follow by a direct inductive argument. ut

