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Abstract

We study a derivative method allowing to prove ter-
mination of computations on regular expressions. A
Coq formalisation of a canonical non-deterministic fi-
nite automaton construction on a regular expression is
presented. The correctness of the functional definitions
is formally verified in Coq using the libraries and the
small-scale reflection tools of Ssreflect. We propose to
extend the proofs further, and this is a work in progress,
to study termination of containment and equivalence in
terms of partial derivatives. This serves as a major mo-
tivation and intended application of the presented ap-
proach. A method that we develop in the paper, called
shadowing, allows for a smooth program extraction
from decision procedures whatever the complexity of
the dependently typed proofs.

Categories and Subject Descriptors F.3.1 [Theory of
Computation]: Logics and Meanings of Programs—
Specifying and Verifying and Reasoning about Pro-
grams

General Terms Verification, Theory

Keywords Partial derivatives of regular expressions,
Mirkin prebases, Coq, Ssreflect
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Figure 1. The automaton of partial derivatives of
((a×(a×b)∗)×a)∗

1. Introduction

The most widely employed form of regular expression
derivatives is due to Brzozowski [5]. Their straight-
forward application is to deterministic finite automa-
ton construction and termination of regular expression
matching. Matching a wordw against a regular expres-
sionE reduces to construction of an equivalent regular
expression in normal form, the word derivative ofE

with respect tow, and checking whether the obtained
word derivative isnullable, that is, matches the empty
word. Since, for every finite word, the process of ob-
taining the word derivative with respect to a regular
expression is terminating, and nullability is decidable
by a straightforward recursive algorithm, Brzozowski
derivatives give a simple and effective notion of regu-
lar expression matching.

Partial derivatives of regular expressions were intro-
duced by Mirkin [16] in an elegant declarative style.
The set of partial derivatives ofE forms a prebase
which is an object of an inductive type. The notion of
prebase is a non-deterministic generalisation of the no-
tion of base[5], that is, the set of word derivatives of
E.

Let us start with an example. Consider the following
non-deterministic automaton: The automaton can be
represented in the following table:
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a b

E {E0} ∅

E0 {E,E1} ∅

E1 ∅ {E0}

In the table representation, we have the vector of states
of the NFA:





E

E0

E1





the transition matrix:




{E0} ∅
{E,E1} ∅

∅ {E0}





and also the ordered set of alphabetic symbols in which
the set of regular expressions is parametric:[a; b].

This automaton recognises the language denoted by
the regular expressionE = ((a×(a×b)∗)×a)∗ (Fig-
ure 1). It can be observed thatE0 andE1 recognise
derivative languages, those obtained by residuating the
language ofE with a word (for example, witha andaa
respectively). The expressionE is its own derivative in
the trivial way: with respect to the empty word. In fact,
this automaton is a minimal NFA recognisingE which
is obtained by anoptimisedprebase. The construction
we present in this paper is simpler and is not optimised
(see Example 2).

Methodology. We useshadowingof richly typed reg-
ular expressions of typere (Section 8) by plain regu-
lar expressions of typere (Section 6). This allows to
overcome the incompatibility of the current implemen-
tation of program extraction of Coq [19] with module
types and unnamed record fields1 that appear for tech-
nical reasons in the type hierarchy of Ssreflect [10]. A
form of this method seems to have been used recently
in [4]. In addition to that, we make use of thesubType
canonical structure in the Ssreflect libraries to establish
a connection between the shadow (simply typed) reg-
ular expressions and the richly typed ones. The shad-
owing approach is based on the idea of adjunction be-
tween a given typeT and its subtypeS which can be

1 There has been a report that extraction has been patched for
unnamed fields in a development version.

described as the type of those objects ofT that satisfy
a given predicateP . More precise definitions of sub-
types are given in 4. Using generic notation, this ad-
junction can be stated as a logical equivalence proposi-
tion:

(F t = s) ↔ (Some t = G s)

whereF is an injection from the subtype to the under-
lying type, andG is apartial injection from the under-
lying type onto the subtype. Partiality here means that
G maps a givens to an object of the kindSome t if
F t is defined and iss. Otherwise, ifF t is undefined,
G s evaluates to the special valueNone representing
the objects of the underlying type for which there is no
corresponding object in the subtype.

Suppose the underlying typeT enjoys a decidable
equality. This is the case with the typeN of Peano num-
bers, for example, that is essential in many algorithmic
constructions. Let us denote this equality by==, so
that t1 == t2 is eithertrue or false. Then the above
adjunction can be simplified as follows:

(F t == s) = (Some t == G s)

where instead of the propositional equivalence we now
use equality of boolean values. This simplified adjunc-
tion together with the fact that the relation== reflects
the usual equality= (and so,== and= can be seen as
mutually interchangeable up to a coercion of boolean
values into propositions), allows to map computations
of values inT that satisfy the predicateP to the cor-
responding values inS. For example, ifT is a sim-
ple type of computational values andP is a predicate
that expresses the property of the result of the computa-
tion being correct (for example, being within specified
bounds), then we can choose between the dependently-
typed representation of computations inS (that are
ideal for theorem proving) and the simply-typed one
(for the purposes of programming or, vice versa, for ex-
traction of the computational content). Section 12 con-
tains an example of an application of this technique.

Another useful method, thesmall-scale reflection
[10], allows for a generic approach to equivalences of
the following kind. LetP : Prop andb : bool such that

P ↔ b = true

We can define an eliminator that allows to reduce a
proof ofP to a proof ofb = true, and vice versa. This
is very efficient when we work with regular languages,
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i.e., recursively defined boolean predicates. The rich
library of small-scale reflection facts allows to alternate
between computational statements such as(w ∈ L) =
(w ∈ M), which is a an equality of boolean terms, and
the corresponding statements of logic, for example,

(w ∈ L) = true → (w ∈ M) = true ∧
(w ∈ M) = true → (w ∈ L) = true

Related work. Our work is related to a non-computa-
tional formalisation of partial derivatives in [1]. To ob-
tain a computational behaviour in the type theory of
Coq, we have to employ quite different foundational
definitions. The shadowing approach we follow allows
for direct functional programming in Coq, and hence
for direct proofs of termination-by-construction. An-
other difference is that we have an explicit simply typed
representation of the transition matrix in Coq (Section
6), possibly for the first time in the field of interac-
tive theorem proving. We propose to use the matrix for
computational decision algorithms in the paper [14].
The formal proofs of that proposal is currently a work
in progress.

Other related works that require slightly differ-
ent foundations include the library for AC-rewriting
and for deciding equivalence of regular languages by
Braibant and Pous [4]. It uses dependently-typed ma-
trices with an analogue of the shadowing technique,
associating simply-typed matrices with a richly-typed
equivalence relation for matrix bounds checking. This
library allows to build computational definitions inside
Coq and uses the extension of first-order Type Classes
in Coq that interacts well with Extraction. There is
also an original work by Krauss and Nipkow on Br-
zozowski derivatives in the Isabelle theorem prover
[15]. They provide a remarkable algorithm for closure-
computation of the binary bisimilarity relation on a
pair of regular expressions that does not require a proof
of its termination. Such computations are definable in
Isabelle thanks to a specialwhile-optioncombinator.
In contrast, Coq requires different approaches, such as
those of [4] or the present paper. The termination of
the non-empty bisimilarity computation algorithm is
proved in [15] by adapting original inductive proofs
by Brzozowski [5]. If it exists and once computed, the
non-empty bisimilarity relation can be given as input
to an equivalence checking algorithm also provided in
[15] that infers equivalence of the languages denoted

by the two regular expressions as a corollary of the
lemma of Rutten [17].

Although the derivative approach is not very popular
among the programmers of practical regular expression
libraries, a number of promising applications is avail-
able from the research-active community. Brzozowski
derivatives have been successfully applied to defini-
tions of terminating algorithms for parsing [7] in de-
pendent type theory, and also to regular expression con-
tainment [11, 12]. The aspect of derivatives is exploited
in the latter paper that is related to a notion of proof
search by delayed applications of the non-deterministic
sum. The resulting construction is very interesting in
that in makes promising connections with proof the-
ory. At the same time, the formal calculus is very large,
which has been a source of difficulties in achieving a
soundness proof of the proof search procedure.

Partial derivatives find their application in the same
areas as Brzozowski derivatives, for example, An-
timirov derivatives in regular expression matching [18],
with the additional benefit being the linear upper bound
on the number of partial derivatives — a dramatic im-
provement compared to word derivatives. A compar-
ison of the two kinds of partial derivatives (Mirkin
derivative and Antimirov derivative) was performed in
[6].

Notational conventions. For the sake of presentation,
we do not provide listings of Coq code, which would
be plain ASCII. Instead, throughout the paper, we use
a human-oriented type-theoretic notation, whereType
denotes the universe of types, and inductive and coin-
ductive definitions are displayed in natural-deduction
style with single and, respectively, double lines. For ex-
ample, the inductive definition of the typeΣ of depen-
dent sum is written in two steps. First, we define the
universe, of which our type is inhabitant (to the right of
the semicolon):

Σ : ∀ (A:Type). (A → Type) → Type

and second, we define theconstructorsof the type by
providing a natural deduction rule for each constructor.
In the case ofΣ, there is only one constructor, and so,
only one rule:

x : A
p : P x

exist A P x p : Σ A P

with exist being the name of the constructor. The struc-
ture of a rule is a finite tree whose root contains the
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conclusion of the rule. Implicit parameters are written
as subscripts. They are omitted when a definition is ap-
plied.

2. Motivation

We start with an algorithmic motivation. First let us de-
fine amonomialto be a regular expression whose main
operation is not+, and apolynomialto be a finite, pos-
sibly empty sum of monomials. We say that a mono-
mialE is in head normal formif it is of the kindaj×F

for some symbolaj and a regular expressionF . Sup-
pose we are given a polynomialE = E1 + · · · + Ek.
The polynomialE can be reduced to a polynomial with
all monomials in head normal form by recursive appli-
cation of the following rewrite rule schemes to every
monomial (where the default association of operations
is to the left):

(F1 × · · ·×Fl × Fl+1)×G 7→

(F1 × · · · × Fl)× (Fl+1 ×G)
(1)

(F1 + · · ·+Fl)×G 7→

F1 ×G+ · · ·+ Fl ×G
(2)

F ∗ ×G 7→ F × (F ∗ ×G) +G (3)

F ∗ 7→ F × F ∗ + 1 (4)

Then, the set of monomials can be rearranged using the
fact that the operation+ is associative, commutative
and idempotent expressed by the followingACI equiv-
alences:

F + (G+H) =L (F +G) +H

F +G =L G+ F

F + F =L F

(5)

as well as using the following equivalence from the
structure of additive monoid on regular languages on
A:

F =L F + 0 (6)

ThereforeE can be reduced to a polynomial

E1 = ai1 × E1
1 + · · ·+ aip1 × E1

p1
+ o(E) (7)

wherep1 is the number of monomials that are neither 0
nor 1, and whereo(E) denotes the regular expression1
if E is nullable (meaning that it denotes a language con-
taining the empty string), and 0 otherwise. The formal
definition ofo is given in Section 6. Then, we apply the

same recursive algorithm to reduceE1
1 , . . . , E

1
p1

, and
so on, until the obtained polynomial is of the form

Eq = aj1 × E
q
1 + · · ·+ ajpq × Eq

pq
+ o(Eq)

whereEq
1 , . . . , E

q
pq are already defined, that is, these

regular expressions appear in the list

E1
1 , . . . , E

1
p1
, . . . , E

q−1
1 , . . . , Eq−1

pq−1

where some duplicates may occur already. Termination
of this recursive process is the goal of the Main The-
orem (Section 9) in this paper for which we provide a
formalised proof by structural induction onE.

Example 1. Consider the concrete alphabetA = [a; b]
and the regular expressionE = ((a× (a × b))∗ × a)∗

over this alphabet. Using the four rewrite rule schemes
(1)–(4), the ACI-equivalences (5), the equivalence (6)
and the obvious congruence rules for=L, we obtain the
following system of equations describing the automa-
ton in Figure 1:

E =L a× (a× b)∗ × a× E + 1

=L a× E0 + o(E),

E0 = (a× b)∗ × a× E

=L (a× b)× E0 + a× E

=L a× E1 + a× E + o(E0),

E1 = b× E0

=L b× E0 + o(E1)

Thus the regular expressionE is described in terms of
its output and the regular expressionE0 which denotes
a residual language that results from taking those words
in the language ofE that start from the symbola and
removing that occurrence ofa. In the terminology of
this paper, the vector of partial derivatives ofE consists
of regular expressionsE,E0 andE1. Note that we can
safely add 0 denoted byo(E0) in the last line of the
equivalence describingE0 to get the required form of
the polynomial (7). Similarly, we also add 0 denoted by
o(E1) when describingE1.

3. Basic Finite Objects

It is standard to have a list-based representation of fi-
nite structures. Advanced finite types may hide the low-
level representation. This is also the case with Ssreflect
libraries. However, due to technical complexity of the
dependently typed hierarchy of structures, it is often
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impossible to use other facilities such as program ex-
traction in combination with advanced finite types. Our
solution is to decouple the simply typed part where
computations are defined and the dependently typed
part where computations are proved correct. We will
define computation-related notions. Lists are defined as
follows:

seq : Type → Type

nil A : seq A

a : A s : seq A

cons A a s : seq A

We will abbreviatenil as[] andcons a s asa::s. Also we
employ a list concatenation functioncat A : seq A →
seq A → seq A with the usual recursive definition and
abbreviatecat s1 s2 ass1++s2.

Below are a few basic definitions on lists. First, the
map combinator:

map : ∀ T1 T2
. (T1 → T2) → seq T1 → seq T2

map f [] = []
map f (x::s) = f x :: map f s

The abbreviation formap (λ x. g x) s is [g x | x ∈ s].
Next, theheadof a list (with a fallback value):

head : ∀ T .T → seq T → T

head x [] = x

head x (y:: ) = y

and thetail function:

behead : ∀ T . seq T → seq T

behead [] = []
behead ( ::s) = s

We will now define an appropriate notion of a
bounded number. It should encapsulate an upper bound
and a proof that the bounded number is less than the
bound. First, take the usual inductive definition of the
type of (unary) natural number:

N : Type

0 : N
n : N
S n : N

We define the (truncated) predecessor of a natural num-
ber as follows:

predn : N → N

predn 0 = 0
predn (S n) = n

The definition of natural addition,addn, is standard and
such that1 + n is convertible withS n. Natural num-
bers enjoy a decidable less-than relation. It can be de-
fined via the usual truncated subtraction and decidable
equality, that is, a relation with valuestrue or false of
typebool. Let us recall the equality relation on natural
numbers as follows:

== : N → N → bool

0 == 0 = true

S m == S n = m == n

0 == S n = false

S m == 0 = false

The less-then relation is then a function

m < n = S m− n == 0

Thus the type of bounded numbers can be defined as
follows:

I : N → Type

p : m < n

Ordinal n m p : I n

So, we have a dependent inductive type here, with
the type of the variablep depending on the valuem.
The typeI n is a special dependent pair type, simpler
than Σ from the Introduction, specified on the con-
crete boolean predicateλ m. m < n. The proof of
m < n is encoded as a boolean value. This has two
outcomes. On one hand, it is easier to reason by cases
on boolean-valued relations than on more general re-
lations with values inType in situations where the re-
lation can be computed inside Coq, provided that the
relevant inversion principles exist. Therefore this defi-
nition of bounded number facilitates proof by cases in
the reflexive interpretation. On the other hand, the type
I n is a subtype ofN by the coercion

nat of ord : ∀(n:N). (I n) → N

NofI i = let Ordinal m = i in m

This permits application of lemmas forN to statements
aboutI n without recursive conversion of finite num-
bers to natural numbers.

The following function is used to obtain a list of
natural numbers fromm to n− 1:
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iota : N → N → seq nat
iota m 0 = []
iota m (S n) = m :: iota (S m) n

There is also a generic iteratoriter:

iter : ∀ (T :Type). N → (T → T ) → T → T

iter 0 f x = x

iter (S n) f x = f (iter n f x)

The iterator can be used, for example, to define a list of
n copies ofx:

nseq : ∀ T . N → T → seq T

nseq T n x = iter n (cons x) []

The typesseq T , for a givenT , andN are inhab-
ited by infinitely many finite objects. Therefore, al-
though their inhabitants are finite, the types themselves
are not. However, given these types, one can think of
other types where finiteness is expressed as part of their
structure. The typeI n, with a boundn, is a basic exam-
ple of a type that is inhabited by finitely many objects
and is a subtype ofN in the precise sense of Section 4.
More generic finite types of whichI n is itself a par-
ticular case have an underlying canonical enumeration
of elements. This enumeration is exactly a list of type
seq T of elements of the underlying typeT . We de-
scribe this kind of finite types in Section 5.

4. Subtypes

In this section we will see exactly howI n is presented
in Ssreflect as a subtype ofN. In general, subtypes can
be modelled in type theory by dependent pairsΣ A P

with the definition in the Introduction whereA is a type
andP is an informative predicate onA. There are two
projections associated withΣ A P . The first projection
π1 maps a termx of typeΣ A P to its component inA.
The second projectionπ2 mapsx to the proof thatP
holds for the component inA, that is, toP (π1 x). This
modelling method is very generic, which has its conve-
niences and discomforts. The terms of the subtype can
be easily coerced to the corresponding terms in the un-
derlying type by the first projection. On the other hand,
comparison of two terms both of typeΣ A P requires to
compare first and then second components of the terms
pairwise. Often, comparing the first components does
not present a difficulty as long as the relation onA that
is being checked is decidable. It is the comparison of
the second components that can become quite technical
and eventually requires to actively use axioms that al-

low comparison of dependent components. In a devel-
opment that significantly relies on the possibility of ex-
plicit expression of given types being subtypes of other
types, there is therefore a worthwhile task to find less
general methods that make comparison of dependent
pairs more tangible, even though that might restrict the
class of acceptable dependent pair as well.

For decidable predicates, that is, for predicates of
type

pred T = T → bool

a method to define subtypes in Coq has been introduced
in [8]. This is the method employed in the Ssreflect
libraries. We explain it here for completeness reasons.
First, let us restrict the type of the second component
and definesubType as follows:

subType : ∀ T :Type. pred T → Type

The next crucial step is to syntactically separate the
actual subtype from the underlying typeT . This is
done by introducing a new parameter (which can also
be defined as a coercion)sub sort representing the
subtype, along with the first projectionval that maps
the subtype to the underlying type, and the dependent
injectionSub that constructs an object in the subtype
given an objectx in the underlying type such thatx
satisfies the predicateP . Additionally, we require an
eliminatorel and a proofq thatval cancelsSub.

sub sort : Type

val : sub sort → T
Sub : ∀ x. P x → sub sort

el : ∀ K. (∀ x p. K (Sub x p)) → ∀ u. K u

q : ∀ x p. val (Sub x p) = x

SubType T P sub sort val Sub el k : subType T P

Behind the complexity of this definition there is a clean
functionality based on the idea of irrelevance of proofs
of boolean predicates. Using this notion of a subtype,
we can compare any two objects of a given subtype
of a type T by comparing their first projections in
T , for which, as we already discussed, a decidable
comparison relation onT suffices.

The definition ofI in the previous section gives rise
to an eliminatorI rect which is derived automatically
by Coq. This eliminator can be given to the constructor
SubType together with the function(nat of ord n) that
stands for the first projectionval. Then, the rest of the
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constructor arguments can be inferred. This application
defines subtyping ofI n in N.

To obtain the adjunction between the subtypeS and
the underlying typeT , as discussed in the Introduction,
we used functionsF which isval here, andG, called
insub in Ssreflect libraries, which can be defined essen-
tially as follows:

insub : ∀ T P (S : subType T P ). T → option S

Noting thatT andP are implicit from the argumentS,
we can write

insub S t =
let p = P t in

if p is true then Some (Sub t p) else None

We need one more detail, that is, the canonical finite
structure onI n, in order to be able to define shadowing.

5. Advanced Finite Types

Advanced finite types feature in Ssreflect libraries [8,
10]. There is a generic type of finite structuresfinType :
Type supporting, among others, the following opera-
tions, for someT : finType:

1. The expressionenum T yields a duplicate-free,
canonical list of all elements ofT .

2. #|T | denotes the cardinality ofT .

3. enum val i is the i-th element ofenum T where
i : I #|T |.

4. enum rank t is the indexi : I #|T | such that
enum val i = t.

Our brief exposition offinType lacks the full def-
inition of the canonical type of types with decidable
equality==, calledeqType in [8, 10]. It nevertheless
appears to be sufficient for the purposes of this paper
to describefinType as a subtype of a typeT with de-
cidable equality such that it possesses a canonical enu-
meration, that is, a list of objects of typeT such that
each object in the canonical enumeration appears there
exactly once. The reader can find formal definitions in
the aforementioned sources.

One can now observe that the inhabitants ofI n form
a canonical enumeration with respect to the relation<

from Section 3. ThereforeI n has a straightforward
canonical finite structure.

6. Prebases

In this section we give recursive definitions for the
straightforward non-optimised prebase construction.

First, we define the simply typed regular expressions
as follows (wheren stands for the number of symbols
in the underlying alphabet):

re : N → Type

Void n : re n Eps n : re n
i : I n

Atom n i : re n

E : re n F : re n

Alt n E F : re n

E : re n F : re n

Conc n E F : re n

E : re n

Star n E : re n

The following output function is straightforwardly ter-
minating:

o : ∀ n. re n → bool
o Void = false
o Eps = true

o (Atom i) = false
o (Alt E F ) = o E || o F
o (Conc E F ) = o E && o F
o (Star E) = true

Below are the functions that derive vectors of partial
derivatives and transition matrices for component reg-
ular expressions in a purely syntactic way. Transition
matrices inhabit the following simple type:

mat T = seq (seq T )

It can be seen thatmat T allows to represent arbitrary
list structures that may not correspond to matrices. The
fact that only correct matrices are generated in the
prebase formation, given that the input matrices are
correct, is proved as part of the correctness criterion
stated in Section 9 and formalised in Section 11.

The base cases of the recursive computation of the
prebase vector and matrix involve constructorsVoid,
Eps andAtom. The first two cases are similar because,
except for the empty word, whatever word we choose to
residuate the these regular expressions with, we obtain
Void, with no derivatives. Therefore we still have to
provide one row of the prebase matrix inpmatVoid
andpmatEps just to express the fact that these regular
expressions have no derivatives with respect to any
symbol.
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ptupVoid : ∀ n. seq (re n)
ptupVoid n = [Void n]

pmatVoid : N → mat (seq N)
pmatVoid n = nseq n []

ptupEps : ∀ n. seq (re n)
ptupEps n = [Eps n]

pmatEps : N → mat (seq N)
pmatEps n = pmatVoid n

The third base case is only slightly bigger. There is
a new derivative with respect to the given symbol with
numberi.

ptupAtom : ∀ n. I n → seq (re n)
ptupAtom i = [Atom i; Eps]

The prebase matrix must have two rows, with the
first row containing the reference to the second row
in the column of the given symbol. This reference is
denoted by0 (recall the numbering schema in Example
2). Other columns are empty, and all the columns in
the second row are empty as well sinceEps has no
derivatives with respect to symbols.

pmatAtom : N → N → mat (seq N)
pmatAtom n a =
[if j == a then [0] else [] | j ∈ iota 0 n] ::
nseq n []

There are three recursive cases where vectors are ob-
tained from vectors of the component regular expres-
sions. Let us consider the case ofAlt first. We construct
a vector of length1 + (size t1 − 1) + (size t2 − 1).
The vector of derivatives ofAlt E F consist of this ex-
pression itself (trivially), the non-trivial derivatives of
E, and the non-trivial derivatives ofF . Here we have
a choice whether to perform optimisations, for exam-
ple, by comparing the languages of derivatives obtained
from different components, in order to achieve the best
space characteristics. However, in this paper we work
with the simplest computational definitions which are
purely syntactic in that no language denotations are
computed at this stage. The first element of the vec-
tor of a component regular expression is this regular
expression itself, by construction. Note that, since the
sizes of the component vectors are are always greater
than zero, which is according to the base cases, the
simply-typed computation of the component regular
expressions does never default to the valueVoid which

is provided here solely for the reason that the function
head requires a default value. Dually, the computation
of the tail by the functionbehead never defaults to the
empty list.

ptupAlt : ∀ n. seq (re n) → seq (re n) → seq (re n)
ptupAlt t1 t2 =
(Alt (head Void t1) (head Void t2)) ::
behead t1 ++ behead t2

With the dimensions of the matrix known from the
vector construction, we have to fill in the first row of
the matrix with disjoint unions of references to the
corresponding rows in the submatrices of non-trivial
derivatives of the component regular expressions. The
disjoint union is implemented by list concatenation. To
access the cells of the component matrices we use a
function nth T x s n that computes then-th element
of the lists of type seq T , with the mandatory default
valuex. Therefore the cell(i, j) can be computed by
the following function whereM is a matrix of type
mat (seq T ):

cell T M i j = nth [] (nth [] M i) j

The rows below the first one contain copies of the cor-
responding rows from the component matrices, how-
ever, the rows from the second matrix have been shifted
by the size of the first matrix less the first row. There-
fore all the references to rows originating from the sec-
ond matrix should be shifted accordingly. Note, simi-
lar to the atomic case, the behaviour of the predecessor
function on natural numbers is non-trivial provided that
correct matrices are given as input.

pmatAlt : N → mat (seq N) →
mat (seq N) → mat (seq N)

pmatAlt n M1 M2 =
let m1 = sizeM1 in

let m2 = sizeM2 in

[cellM1 0 j ++
[addn (predn m1) k | k ∈ cellM2 0 j]

| j ∈ iota 0 n] ::
behead M1 ++
[
[
[addn (predn m1) k | k ∈ cell M2 i j]

| j ∈ iota 0 n]
| i ∈ iota 1 predn m2]

Turning to the case ofConc, we remark that it re-
quires no new auxiliary function definitions. Moreover,
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the vector is of the same size as in the previous case.
However, the firstsize t1 elements are concatenations
of a derivative of the first component regular expression
with the second component expression. The remaining
elements represent derivatives for the case when the
first expression matches the empty string.

ptupConc : ∀ n. seq (re n) → seq (re n) → seq (re n)
ptupConc t1 t2 =
[Conc E (head Void t2) | E ∈ t1] ++ behead t2

Concatenation behaves differently depending on whether
or not the first component regular expression is nul-
lable. This transforms to the derivative setting as well.
So, we add an extra argument of typeseq bool to
the function constructing the concatenation matrix to
represent the nullability characteristic of each of the
derivatives of the first expression. Then we shift the
values of the references to the rows from the second
component matrix just as we did in the case ofAlt.

pmatConc : N → mat (seq N) →
mat (seq N) → seq bool → mat (seq N)

pmatConc n M1 M2 o1 =
let m1 = sizeM1 in

let m2 = sizeM2 in

[
[
cell M1 i j ++
if nth false o1 i
then [addn (predn m1) k | k ∈ cell M2 0 j]
else []

| j ∈ iota 0 n]
| i ∈ iota 0 m1] ++
[
[
[addn (predn m1) k | k ∈ cell M2 i j]

| j ∈ iota 0 n]
| i ∈ iota 1 (predn m2)]

The last is the case ofStar. Here we have similarity
with the case ofConc, which is intuitively clear, and
even more simple than that because there is only one
component regular expression.

ptupStar : ∀ n. seq (re n) → seq (re n)
ptupStar t =
let E = Star (head Void t) in
E :: [Conc E′ E | E′ ∈ behead t]

Like in the case of concatenation, we make use of a
list of nullability characteristics.

pmatStar : N → mat (seq N) →
seq bool → mat (seq N)

pmatStar n M o1 =
let m = sizeM in

head [] M ::
[
[
cell M i j ++
if nth false o1 i then cell M 0 j else []

| j ∈ iota 0 n]
| i ∈ iota 1 (predn m)]

Putting it all together, the vector of partial deriva-
tives and the transition matrix are computed by the fol-
lowing functions:

ptup : ∀ n. re n → seq (re n)
ptup Void = ptupVoid
ptup Eps = ptupEps

ptup (Atom i) = ptupAtom i

ptup (Alt E F ) = ptupAlt (ptup E) (ptup F )
ptup (Conc E F ) = ptupConc (ptup E) (ptup F )
ptup (Star E) = ptupStar (ptup E)

pmat : ∀ n. re n → mat (seq N)
pmat Void = pmatVoid
pmat Eps = pmatEps

pmat (Atom i) = pmatAtom (NofI i)
pmat (Alt E F ) = pmatAlt (pmat E) (pmat F )
pmat (Conc E F ) = pmatConc (pmat E) (pmat F )

[o i | i ∈ ptup E]
pmat (Star E) = pmatStar (pmat E)

[o i | i ∈ ptup E]

The computed values are correct vectors and matri-
ces given that the inputs are correct. Type theory of-
fers many possible choices of proving this. In the re-
maining sections we argue in favour of one particular
choice of implementation involving type-rich regular
expressions because type enrichment allows to define
the computable language interpretation of a rich regu-
lar expression. This would not be possible without an
explicit type of finite structuresfinType, with its special
instrumentation. At the same time, by proving the cor-
rectness of the simply-typed construction, we establish
a subtype relation between the richly typed and sim-
ply typed versions of regular expressions. This allows
to extract computations from dependently typed con-
structions inside Coq.
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To illustrate the use of the simply typed construction,
we provide a computation of a non-optimised prebase
for the regular expression we are already familiar with
since the Introduction.

Example 2(Expression((a×(a×b)∗)×a)∗).

E = Star
(Conc
(Conc (Atom a)
(Star (Conc (Atom a) (Atom b))))

(Atom a))

The vector of partial derivativesPE = ptup E contains
representations of the following expressions:

E = ((a×(a×b)∗)×a)∗

E0 = ((1×(a×b)∗)×a)∗×((a×(a×b)∗)×a)∗

E1 = (((1×b)×(a×b)∗)×a)∗×((a×(a×b)∗)×a)∗

E2 = ((1×(a×b)∗)×a)∗×((a×(a×b)∗)×a)∗

E3 = 1×((a×(a×b)∗)×a)∗

The matrix of transitions is computed as follows:

ME = pmat E =
[[[0]; []];
[[1; 3]; []];
[[]; [2]];
[[1; 3]; []];
[[0]; []]]

Observe that the following two pairs of regular expres-
sions have the same languages:E andE3; E0 andE2.
The algorithm is unaware of the denotational seman-
tics, and therefore these equivalences cannot be ex-
pressed at this stage. Semantic definitions are provided
in the next two sections.

7. Regular Languages

In this section we provide definitions of regular lan-
guages according to [9]. These definition give rise to a
regular expression pattern matching algorithm already
without a notion of derivative. The interest in deriva-
tives comes from the fact that it is difficult to see how
can we decide relations on regular expressions such as
equivalence or containment in Coq without construct-
ing some intermediate, derivative regular expressions.
Partial derivatives are in general more efficient com-
pared to Brzozowski derivatives, which motivates our
study.

Ssreflect distinguishes between two kinds of predi-
cates: collective and applicative ones. Both can be seen
as functions of the kindT → bool. One of the differ-
ences between these is that the former allows a more
general usage compatible with notationx ∈ P while
the latter is simply a function that is applied as usual:
P x. In fact, the predicates in the definition of regu-
lar languages can be used either way, however, since
the notationx ∈ P does not simplify, there should be a
special coercionmem that transforms a collective pred-
icate to its simplifiable applicative counterpart.

We parametrisewords over finite types. The latter
play the role of the alphabet.

word : finType → Type
word X = seq X

The most basic kind of a predicate ispred = λ (T :
Type). T → bool. We use straightforward predicates
such as the predicatepred0 that always fails, the predi-
catepred1 that succeeds only for a given object, and the
disjunctionpredU of two predicates. From that, we de-
fine the notion of alanguageover a finite alphabet and
the basic regular language constants and operations: the
empty languagevoid, the language of the empty string
eps, the language of a one-symbol wordatom, alterna-
tion (union) of two languagesalt, the concatenation of
two languagesconc and the iteration (Kleene closure)
of a languagestar.

language : finType → Type
language X = pred (word X)
void : ∀ X . language X
void = pred0
eps : ∀ X . language X
eps = pred1 []
atom : ∀ X . X → language X
atom a = pred1 [a]
alt : ∀ X . language X → language X → language X
alt L1 L2 = predU (mem L1) (mem L2)
conc : ∀ X . language X → language X → language X
conc L1 L2 w =
#
∣

∣λ (i : I (1 + (size w)).
L1 (take i w) && L2 (drop i w)

∣

∣ != 0

The use of the cardinality function#| | in the defi-
nition of conc is remarkable in that it forces unifica-
tion of the function inside with its canonical represen-
tation of typefinType, which allows to access the func-
tion graph as a canonical enumeration. The cardinal-
ity function then computes the number of elements of
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the underlying type satisfying the finite predicate ex-
pressed by the function. This number is non-zero if and
only if the concatenation of the two languages is non-
empty. Therefore the cardinality function helps to de-
fine a computational existential quantifier.

Before giving the definition of thestar language, we
require a computation of aresidual languageby the
following function:

residual : ∀ X . X → language X → language X
residual a L = λ w. L (cons a w)

Now we can define a structurally recursive version of
language iteration:

star : ∀ X . language X → language X
star L =
letrec star′ : word X → bool in
star′ (a::w) = conc (residual a L) star′ w
star′ [] = true

A non-trivial organisation offinType that shields away
the body of the cardinal function in the definition of
conc from direct evaluation allows to satisfy the re-
quirement of having a structurally decreasing argument
in the definition of thestar language. This is a situation
where type enrichment in facthelpsin definition of a
structurally recursive function.

8. Richly Typed Regular Expressions

With all the computational definitions for regular lan-
guages at hand, it is possible to define the type-rich ver-
sion ofre:

re : finType → Type

Void X : re X Eps X : re X
a : X

Atom X a : re X

E : re X F : re X
Alt X E F : re X

E : re X F : re X
Conc X E F : re X

E : re X
Star X E : re X

The corresponding output functiono is little changed
from o:

o : ∀ X . re X → bool
o Void = false
o Eps = true
o (Atom a) = false
o (Alt E F ) = o E || o F
o (Conc E F ) = o E && o F
o (Star E) = true

Finally, thanks to these definitions, we can define the
semantic representation of a type-rich regular expres-
sion:

lang : ∀ X . re X → language X
lang Void = void
lang Eps = eps
lang (Atom a) = atom a

lang (Alt E F ) = alt (lang E) (lang F )
lang (Conc E F ) = conc (lang E) (lang F )
lang (Star E) = star (lang E)

The relation betweenre and re is formalised in the
proof of the Main Theorem.

9. Correctness Criterion for Prebases

Before we give a final formalised definition of the pre-
base construction, it is interesting to see how it corre-
sponds to paper-and-pencil constructions found in lit-
erature [2, 16]. In the typed version of the theorem of
Mirkin we assume an iterated operator

⊕

whose pre-
cise definition follows shortly in the next section. It is
a generalised version of the language operatoralt ob-
tained by folding with a default value that is shown here
by the tail expression with a+.

Main Theorem (Mirkin) . For any given regular ex-
pressionE of typere X, we can construct a vector of
partial derivativesP of lengthm > 0 and a matrix of
transitionsM of sizem×n, wheren is the number of
symbols in the alphabetX, such that

(i) The expression located by the coordinate 0 inP isE.
(ii) The cells of the matrixM are subsets of the set

[0,m− 1] of natural numbers.
(iii) Let P = [E0; . . . ;Em−1]. For each i < m, the

following language equivalence holds:

Ei =L

⊕

0≤j<n

(
⊕

k∈M i j

(conc aj Ek) + void
) + o Ei

We note that the size ofP under the non-optimised
prebase construction does not adhere to the better upper
bound|P| ≤ ||E|| + 1 that the optimised construction
enjoys, where||E|| denotes the number of the alpha-
betic symbols inE.

10. Iterated Language Operators

Now we will describe our extension of canonical iter-
ated operators of [3]. The general schemereducebig for
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iterating an operatorop on a listr over a functionF
with a default (terminal) valueidx and a filter predi-
cateP is the following:

reducebig : ∀ (R I:Type). R → (R → R → R) →
seq I → pred I → (I → R) → R

reducebig idx op r P F =
foldr (λ i x. if P i then op (F i) x else x) idx r

We define the iterated version ofalt as

reducebig idx alt r predT F

wherepredT is a predicate that is always true. We sim-
ply do not use the predicate argument in this instance.
This expression is denoted by

altidxi∈r F i

There is a technical subtlety in the actual definition in
Coq that allows to control the flow of term simplifi-
cation. So, in effect, the iterated operators have to be
unfolded by special lemmas.

The approach of [3] does not straightforwardly al-
low for extensional use which would be required for
working with iterated collective predicates. Therefore
we extend it with an appropriate notion of anexten-
sional morphismand provide technical lemmas allow-
ing for equational reasoning (by rewriting) about such
predicates in general, and languages in particular. We
treat extensional equalities with the following lemma:

eq xbig : ∀ T (op : pred T → pred T → predT )
(opb : bool → bool → bool) (idx1 idx2 : pred T ).
(∀ (P Q : pred T ) (x : T ).
(x ∈ op P Q) = opb (x ∈ P ) (x ∈ Q)) →

(∀ y. (y ∈ idx1) = (y ∈ idx2)) →
∀ (r : seq T ) (F1 F2 : seq T → pred T ).
(∀ i y. (y ∈ F1 i) = (y ∈ F2 i)) →

∀y. (y ∈ opidx1

i∈r F1 i) = (y ∈ opidx2

i∈r F2 i)

This particular lemma allows to rewrite subterms of the
iterated operation with extensionally equal terms.

11. Prebases, Formalised

Using iterated operators, it is easy to formalise the part
(iii) of the Main Theorem. Thus we obtain a formalised
version of the definition of a prebase. It’s type signature
is as follows:

prebase : ∀ X . re X → Type

In Section 6, we have already seen the functionnth
that computes then-th element of a list, with a manda-
tory default value. Instead of lists, here we use a more
expressive typetuple that has an explicit length param-
eter, with a proof that the length of the underlying list of
the tuple is equal to this parameter. Therefore we have a
dependently typed extension of the functionnth, called
tnth, that does not require a default element. More pre-
cisely, this default element is inferred automatically
from the parameters of the constructor oftuple. Also,
let us denote the canonical zero of a typeI n by ord0,
for any n. The difference concerns only the proof-
irrelevant part. Lastly, the version of richly typed matri-
ces we use ismatrix of typeType → N → N → Type,
such thatmatrix T m n is the type ofm by n matri-
ces whose cells are of typeT . This is implemented in
terms of tuples as an#

∣

∣(Im)×(I n)
∣

∣-tuple ofT , which
in fact can be endowed with a canonical finite structure.

For a givenE, an object of typeprebaseE is defined
by induction with a single constructor

Prebase X pN pP pM L0 Li

whose arguments are explained below:

pN : N
pP : tuple (1 + pN) (re X)
pM : matrix (seq (I pN)) (1 + pN) #|X|
L0 : ∀ w. (w ∈ (lang (tnth pP ord0))) =

(w ∈ lang E)
Li : ∀ i w.

(w ∈ lang (tnth pP i)) =
(w ∈

(alt
lang (o (tnth pP i))
j<#|X|

(altvoidk∈pM i j

(conc
(atom (enum val j))
(lang (tnth pP k))
))))

The Coq proofs are contained in [13].

12. Example of a Problem Solvable by
Computation

Below we are analysing in detail one characteristic
step in the proof of the correctness criterion. It shows
advantages of the computational encoding of regular
expressions that allows to perform crucial deduction
steps effectively by rewriting in the goal formula.
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The example problem originates from our proof of
the inductive step of the Main Theorem for the case
where the head constructor ofE is Alt. We require
the dependently typed left and right shifting operations
on bounded numbers. Let us now skip the technical
definitions and give their types only:

lshift : ∀ m n:N. I m → I (m+ n)

and
rshift : ∀ m n:N. I n → I (m+ n)

Example 3. Let E1 and E2 be regular expressions.
Assume thatE1 andE2 both have the prebase structure.
Let N1, P1, M1, L0

1 andLi
1 be the prebase structure

of E1, and letN2, P2, M2, L0
2 andLi

2 be the prebase
structure ofE2.

Using the straightforward regular expression and
matrix conversion functions, we can define

E = Alt E1 E2

N = N1 +N2

P = [re↑ (erefl #|X|) i
| i ∈ ptup alt

[re↓ (erefl #|X|) i | i ∈ P1]
[re↓ (erefl #|X|) i | i ∈ P2]]

M = mat (1 +N) #|X| N

(pmat alt #|X| (mx↓ M1) (mx↓ M2))

So, for instance, one can show the following equiva-
lence of languages:

(w ∈ lang (tnth P (lshift N ord0))) =
(w ∈

alt
lang (o (tnth P (lshift N ord0)))
j<#|X|

altvoid
k∈M (lshift N ord0) j

conc
(atom (enum val j))
(lang (tnth P (rshift 1 k))))

This example is interesting in that it allows to ap-
ply extensional equality lemmaeq xbig as well as the
standard morphism lemma from the Ssreflect libraries.
The full proof is a little bit technical, but the interested
reader is welcome to refer to the accompanying proofs
in [13]. In the proof, we use the fact that the injections
re↑ andre↓ cancel each other.

In relationship to the corresponding functions on
representations of matrices,mat ↑ andmat ↓, is dif-
ferent. In fact, the functionmat ↓ may eventually help
to define a formal notion of subtyping of dependently
typed matrices of the kindmatrix (seq (I pN)) (1 +

pN) #|X| in simply typed matrices of the kindmat (seqN).
This is what seem to be hinted by the proofs but has not
yet been verbalised.

13. Conclusions and Further Work

We presented a novel formalisation of a functional con-
struction [16] of a non-deterministic finite automaton
recognising the language of a given regular expres-
sion and introduced notions that contribute to this for-
malisation. One of the basic methods we employ is
the clean separation between the functional program-
ming part and the theorem proving part, the idea that
appears, for example, in [4]. Among other outcomes,
this allows to have the functional programming part
always extractable to Ocaml, Haskell or similar lan-
guages, while the type-rich theorem proving counter-
part may not have this property being constructed in
a manner which cannot be treated directly by auto-
mated program extraction procedures. Still, the con-
nection between the two parts is fully proved, machine
checked, and allows to alternate between one and the
other. The proofs are provided in the contributed proof
script [13].

We are working on mechanisation of computational
decision procedures for regular language containment
and equivalence, for which we gave preliminary paper-
and-pencil proofs in terms of prebases in [14]. The for-
malised proofs of correctness of these decision proce-
dures are not quite ready yet, but we are moving to-
wards a complete formalisation. Also we are working
on the optimised prebase construction that has the best
upper bound on the number of partial derivatives.
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