
Matching problem for regular expressions

with variables

Extended abstract

Vladimir Komendantsky

University of St Andrews, UK
http://www.cs.st-andrews.ac.uk/∼vk/

Abstract. We study the notion of backreference in practical regular ex-
pressions with the purpose of formal analysis and theorem proving. So far
only their operational semantics was studied in formal language theory.
However, for efficient reasoning and independence from implementations
we need a mathematical concept of backreference that does not depend
on evaluation strategies, etc. We introduce such a notion in terms of a
possibly infinite set of finite tree unfoldings of regular expressions for
which we state the finiteness of a partial derivative (actually, prebase)
representation.

1 Introduction

Regular expressions [14, 10] are a formalism ideally suited to specification and
implementation with formal methods. They are essential for text processing and
form the basis of most markup schema languages. Regular expressions are useful
in the production of syntax highlighting systems, data validation, speech pro-
cessing, optical character recognition, and in many other situations when we
attempt to recognise patterns in data.

Extended versions of regular expressions are used in search engines such as
Google Code Search. In fact, there is a difference between what is understood
by the term regular expression in programming and in theoretical computer
science. Different software based on regular expressions has in each case its own
“RegEx flavour”: ECMAScript, Perl-style, GNU RegEx, Microsoft Word, POSIX
Basic/Extended RegEx (with extensions), Vim, and many others.

In contrast, theoretical computer science uses a single formal definition for a
regular expression which defines it as consisting of constants and operators that
denote sets of strings and operations over these sets respectively. For example,
assuming a and b are symbols, a+b∗ denotes the set {ǫ, a, b, bb, bbb, . . . }, where ǫ
denotes the empty string; and (a+ b)∗ denotes the set of all strings composed of
a and b (including the empty string ǫ): {ǫ, a, b, aa, ab, ba, bb, aaa, . . . }. The formal
definition is purposely minimalist in that it avoids redundant operators that can
be expressed through application of existing ones. Regular expressions in the
precise sense express the class of regular languages, which is exactly the class of

languages accepted by finite state automata. This definition has the maximum
degree of independence from any implementation.

In functional programming, the usual procedure is to enumerate words of
the languages denoted by regular expressions using finite automata [11]. Less
common but more efficient are partial derivatives of regular expressions [12, 3].
They are purely functional [9].

Patterns. A pattern [6] is a description of a word at a meta-scale: instead of
considering the word as a sequence of individual symbols, one looks at the word
as a sequence of certain blocks. More formally, a pattern p is a word that contains
special symbols, called pattern variables ; p is a pattern of a word w if w is
obtained from p by uniformly replacing the variables with words (which may be
empty depending on the convention). The pattern language denoted by a pattern
p is the set of all words that match p. For example, the pattern xyx denotes the
set of all words in a language each of which has a prefix and a suffix that are
the same and have a word in between.

Many features found in modern pattern matching libraries, and in languages
such as Perl or Python, provide expressive power that far exceeds the capacities
of regular languages and requires pattern languages. In our opinion, the most
interesting of such extra capacities is backreferencing – the ability to group
subexpressions and recall the value they match later in the same expression.
Such a pattern can match strings of repeated words like “papa”, called squares
in formal language theory. The obvious Perl pattern for such strings is (.*)\1.
However, the language of squares is not regular, nor is it context-free. Regular
expression matching with an unbounded number of backreferences, as supported
by numerous modern tools, is NP-complete [1], and therefore requires practical
algorithms that maximally approximate non-deterministic complexity bounds.

Backreferences may be seen acting as variables in patterns. The language de-
noted by a pattern is obtained by substituting variables with arbitrary terminal
strings in the case on erasing patterns and non-empty terminal strings in the
case of non-erasing patterns.

Pattern languages are often accepted as the theoretical meaning of extended,
also called practical, regular expressions [5, 13]. However, patterns are defined
with no recursion or choice and therefore require pre-processing of regular ex-
pressions in order to form a set of patterns from an expression with iteration
or non-deterministic choice. For that reason, in this particular paper, we do not
choose patterns as the meaning of backreferences.

Matching problem. The matching problem for regular expressions is the problem
to decide, for a given word over a finite alphabet of symbols and a given regular
expression, whether or not the word belongs to the language denoted by the
regular expression. There are quite efficient polynomial algorithms for deciding
this basic problem [12, 3, 7, 9]. These algorithms are based on a simple fact that
the non-deterministic finite automaton recognising the language of the regular
expression is guaranteed to terminate on finite input words.

2

Alternative existing definitions of regular expressions with backreferences,
for example, by means of match-trees [4] or ordered trees [5], are better than
patterns in terms of correspondence to the implementation of practical regular
expressions – since they refer to the operational matching semantics – but, on
the other hand, the tree semantics is quite specific to their matching problem.

The solution to these odds that we propose in this paper is to combine the
two approaches: patterns and trees. The downside of patterns can be overcome
if we consider patterns over convenient tree unfoldings of regular expressions
instead of patterns over plain strings. Pattern variables then become symbolic
variables ranging over regular expressions.

Outline. In the paper we recall definitions of patterns and match-trees for regular
expressions with backreferences, and give a combined treatment to provide a tree
semantics for regular expressions with variables. We then extend the language
of regular expressions with constraints that define the meaning of variables.

2 Pattern languages

Let Σ be a finite alphabet of terminal symbols and X an infinite set of variables
such that Σ∩X = ∅. A pattern is a non-empty string over Σ∪X, a terminal-free
pattern is a non-empty string over X, and a word is a string over Σ. The set of
variables of a pattern α is denoted Var(α).

For any alphabets A and B, a morphism from A to B is a function h :
A∗ → B∗ that satisfies h(u · w) = h(u) · h(w) for all u,w ∈ A∗. A morphism
σ : (Σ ∪X)∗ → Σ∗ is a substitution if σ(a) = a for every a ∈ Σ.

The matching problem for patterns is the problem to decide, given a pattern
α and a word w ∈ Σ∗, whether w ∈ LΣ(α).

The following automaton construction can be used to recognise pattern lan-
guages [13]. That is, we can construct an automaton M satisfying L(M) =
LΣ(α), for a terminal-free pattern α. A Janus automaton JFA(k) is a 2-way 2-
head automaton with k bounded counters. It is a tuple M = (K,Q,Σ, δ, q0, F)
where K is a set of k bounded counters, Σ is an input alphabet, δ is a transition
function, Q is a set of states, F ⊆ Q is a set of final states, and q0 ∈ Q is the ini-
tial state. Each computation step of the automaton sets up a counter bound for
each counter. The counters accept operations of increment by 1, noop, and reset
with 0. In case of increment, the next counter value is computed modulo the
bound. In case of reset, the new counter bound is non-deterministically guessed.

Reidenbach and Schmid [13] stated the following polynomial complexity re-
sult for pattern languages. Let vd(α) denote the maximum number of variables
separating any two consecutive occurrences of any variable in a pattern α.

Theorem 1. For a terminal-free pattern α and w ∈ Σ∗, there is a JFA(vd(α)+
1) that decides w ∈ LΣ(α) in time O(|α|3|w|(vd(α)+4).

The polynomial worst-case complexity is achieved at the expense of introduc-
ing a non-deterministic reset feature, among other things. Although we would

3

like to be able to reason about such algorithms, it does not seem possible to im-
plement Janus automata deterministically. Moreover, state management issues
are excessive, which makes these automata intangible from type theory. We need
a more functional and less procedural definition of matching semantics. Such a
definition appears in terms of ordered trees and is outlined in the next section.

3 Language-theoretic definition of regular expressions

with backreferences

Let us assume that the opening parentheses in a given formal expression E are
numbered from the left to the right, and the closing parentheses are numbered
in the correspondence with the opening parentheses. For example,

(
1
. . . (

2
. . . (

3
. . .)

3
. . .)

2
. . . (

4
. . .)

4
)
1

Definition 1 (Backreference). A backreference \m where m ≥ 1, matches
the contents of the m-th pair of numbered parentheses on the left of it.

For example, the regular expression (a∗)×b×\1 defines the language

{an · b · an | n ≥ 0}

Lemma 1 (CSY pumping lemma, [4]). Let E be a rewb. Then there is a
natural number n such that, for w ∈ L(E) and |w| > n, there is an m ≥ 1 and
a decomposition w = x0 · y · x1 · y · . . . · xm such that

1. |x0 · y| ≤ n,
2. |y| ≥ 1,
3. x0 · y

j · x1 · y
j · . . . · xm ∈ L(E), for all j > 0.

From [4] it is known that rewb languages are context-sensitive and incompa-
rable with the family of context-free languages. The latter is due to the observa-
tion that the language {an · bn | n ≥ 0} is context-free but cannot be expressed
by a rewb (as a corollary of Lemma 1), and the language {an ·b ·an ·b ·an | n ≥ 1}
is a rewb language but not a context-free one.

In [5], it was proved that rewb languages are not closed under intersection
and their emptiness of intersection problem is undecidable. Moreover, since [1]
we know that the matching problem for rewbs is NP-complete for arbitrary al-
phabets, and the paper [5] proves that NP-completeness holds even when the
target string is over a unary alphabet.

More specifically, to define a matching problem for rewbs we quote the def-
inition of matching of a string with an rewb from [5]. It uses the notion of an
ordered tree. An ordered tree T is a valid match-tree for w and E if and only if
the root of T is labelled by (w,E) and the following conditions hold for every
node u ∈ Dom(T):

1. If T (u) = (w, a) for some a ∈ A then u is a leaf node and w = a.

4

2. If T (u) = (w,F1×F2) then u has two children labelled, respectively, by
(w1, F1) and (w2, F2), with w1 · w2 = w.

3. If T (u) = (w,F1 + F2) then u has one child labelled either by (w,F1) or by
(w,F2).

4. If T (u) = (w,F ∗) then either u is a leaf node and w = ǫ or u has k ≥ 1
children labelled by (w1, F), . . . , (wk, F), with w1 · wk = w.

5. If T (u) = (w, (
i

F)
i

) then it has one child labelled by (w,F).

6. If T (u) = (w, \m) then u is a leaf node, (
m

F)
m

is a subexpression of E,

and there is a node v to the left of u such that T (v) = (w, (
m

F)
m

) and no

node between v and u has (
m

F)
m

in its label. In other words, w is the string

previously matched by (
m

F)
m

in the left-to-right pre-order of nodes.

The paper [4] features a slightly different definition where unassigned back-
references are set to match the empty string by default.

The language L(E) denoted by a rewb E is the set of all w ∈ Σ∗ such that
(w,E) is the root label of a valid match-tree. Thus we can state the following
problem.

Definition 2 (Matching problem for rewbs). For some w and E, is (w,E)
the root label of a valid match tree?

Unlike the case with Janus automata, there is an explicit search tree struc-
ture, although there does not seem to be a specific computational machine ded-
icated to the task of proof search for the matching problem in the literature.
Meanwhile proof search is the most interesting part here. In the next section
we elaborate on the tree semantics of matching, completely separating regular
expressions and the trees they denote.

4 Regular expressions with variables

We define regular expressions with variables (revs) using by induction as follows:

E ::= 0 | 1 | a | x | E + E | E×E | E∗

for any a ∈ Σ and any x ∈ X.

In practical regular expressions, the variables (i.e., backreferences) are as-
signed values in regular expressions. Therefore we have to express this kind of
assignments. We can do that for a rev E by introducing a telescopic environment
∆ consisting of equalities x1 = E1, . . . , xn = En, where x1, . . . , xn ∈ Var(E)
are distinct variable names and xi does not occur in Ek for all k ≤ i. The
latter is required to exclude circularity. We say that E is well-defined by ∆ if
Var(E) = Dom(∆) and the ordering of variables in ∆ coincides with the left-to-
right ordering of the first occurrences of corresponding free variables in E.

5

For E well-defined by ∆, let us add one more clause in the definition of
one-step unfolding:

!x = ∆(x)

for x ∈ Var(E). This a template definition of unfolding that can be modified
to allow to experiment with different version of operational matching semantics.
For example, one has the straightforward matching with backpropagation as
in [1] by modifying the definition of one-step unfolding to enumerate possible
candidate matches for occurrences of the variable. We omit the definition in this
short paper.

The tree semantics of a rev E well-defined by ∆ is the potentially infinite set
of all finite unfoldings of subterms of E. Thinking in terms of algebra, we arrive
at a conceptually simpler definition compared to those outlined in the previous
two sections. The prebase set π∆(E) of E is defined by induction as follows (in
the style of [2], modified from [12]):

π∆(0) = ∅ π∆(F +G) = π∆(F) ∪ π∆(G)

π∆(1) = ∅ π∆(F×G) = π∆(F) ·G ∪ π∆(G)

π∆(a) = {ǫ} π∆(F ∗) = π∆(F) · F ∗

π∆(x) = π(!x)

Since ∆ is non-circular, and all the variables in E are defined in ∆, the clause for
µ above does not introduce divergence. Therefore we have the following theorem:

Theorem 2. For E well-defined by ∆, the set π∆(E) is finite.

We omit the formulation of the prebase transition matrix. That matrix and the
set of states {E} ∪ π∆(E) yield a non-deterministic finite automaton accepting
the language of E. Remarkably, we have the following corollary extending the
results on regular expressions [12, 3]:

Corollary 1. A word w ∈ Σ∗ is contained in the language of E (well-defined by
∆) if and only if all proper suffixes of w are contained in L(E) ∪ L(

⋃
π∆(E)).

Therefore the matching problem for revs is effectively decided by the prebase
construction. The nice property of this construction is that we have to compute
prebase only once for a given regular expression, and then matching a word
against it does not require any further computations but only traversal using
the transition matrix.

5 Conclusions

We discussed a template for formal semantics of backreferences in regular ex-
pressions. It can be implemented in a pure functional style, in particular, in
constructive type theory. The obtained semantics in terms of prebases is purely
denotational. Matching with backreferences can be implemented on top of it
using backpropagation. Nevertheless that version of matching – using partial

6

derivatives – is different from the standard backtracking semantics of backrefer-
ences and therefore deserves further study in terms of complexity and possible
optimisations, such as workarounds to tame backpropagation. The current work
in progress concerns a certified matching algorithm: We aim at proving on a
computer that proof search of the matching problem terminates for any input
word and any well-defined regular expression with variables.

References

1. A. V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A: Algorithms and Complexity,
pages 255–300. The MIT Press, 1990.

2. J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial derivative
automata formalized in Coq. In Implementation and Application of Automata
2010, volume 6482/2011 of Lecture Notes in Computer Science, pages 59–68, 2011.

3. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci., 155(2):291–319, 1996.

4. C. Campeanu, K. Salomaa, and S. Yu. A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14:1007 – 1018,
2003.

5. B. Carle and P. Narendran. On extended regular expressions. In Proceedings of the
3rd International Conference on Language and Automata Theory and Applications,
LATA ’09, pages 279–289, Berlin, Heidelberg, 2009. Springer-Verlag.

6. G. Castiglione, A. Restivo, and S. Salemi. Patterns in words and languages. Dis-
crete Appl. Math., 144(3):237–246, 2004.

7. J.-M. Champarnaud and D. Ziadi. Canonical derivatives, partial derivatives and
finite automaton constructions. Theor. Comput. Sci., 289(1):137–163, 2002.

8. V. Komendantsky. Formal proofs of the prebase theorem of Mirkin, 2011. Coq
script available at http://www.cs.st-andrews.ac.uk/ṽk/doc/prebase.v.

9. V. Komendantsky. Reflexive toolbox for regular expression matching: Verifica-
tion of functional programs in Coq+Ssreflect. In The 6th ACM SIGPLAN Work-
shop Programming Languages meet Program Verification (PLPV’12), Philadelphia,
USA, 24 January 2012. For contributed proofs, see [8].

10. D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Infor. and Comput., 110(2):366–390, 1994.

11. M. D. McIlroy. Enumerating the strings of regular languages. Journal of Functional
Programming, 14:503–518, 2004.

12. B. G. Mirkin. New algorithm for construction of base in the language of regular
expressions. Tekhnicheskaya Kibernetika, 5:113–119, 1966. English translation in
Engineering Cybernetics, No. 5, Sept.–Oct. 1966, pp. 110-116.

13. D. Reidenbach and M. Schmid. A polynomial time match test for large classes of
extended regular expressions. In M. Domaratzki and K. Salomaa, editors, Imple-
mentation and Application of Automata, volume 6482 of Lecture Notes in Computer
Science, pages 241–250. Springer Berlin / Heidelberg, 2011.

14. S. Yu. Regular languages. In G. Rozenberg and A. Salomaa, editors, Handbook
of formal languages, volume 1: Word, language, grammar, pages 41–110. Springer-
Verlag, 1997.

7

